
Massachusetts Institute of Technology
Department of Electrical Engineering and Computer Science

6.453 Quantum Optical Communication

Problem Set 8 Solutions

Fall 2016

Problem 8.1

Here we will derive the fidelity of a measure-and-prepare approach to qubit transmis-
sion. Suppose that Charlie has a single photon whose polarization state is

|ψC〉 = α|H〉+ β|V 〉,

where |α|2 + |β|2 = 1 and |H〉 and |V 〉 denote horizontally-polarized and vertically-
polarized single photon states, respectively. Charlie wants to transmit this state
to Bob, but Bob is too far away for reliable fiber-optic transmission of that single
photon. Instead, Charlie gives his photon to Alice—who is located nearby—for her
to measure in the H/V basis using a polarizing beam splitter and unity quantum
efficiency photodetectors, as shown in Fig. 1. If Alice gets a click on her H detector,
she sends Bob a classical message saying that he should prepare an H photon as his
replica of |ψC〉. If Alice gets a click on her V detector, then she sends Bob a classical
message saying that he should prepare a V photon as his replica of |ψC〉. Thus, Bob’s
state after this measure-and-prepare protocol is

{ |H〉, if Alice got an H click
|ψB〉 =

|V 〉, if Alice got a V click.

Figure 1: Alice’s H/V polarization-measurement system. PBS denotes polarizing
beam splitter.
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(a) It is easy to find Pr( |ψB〉 = |H〉 | |ψC〉 ) and Pr( |ψB〉 = |V 〉 | |ψC〉 ), i.e., the
probabilities for Bob’s two possible states conditioned on the value of Charlie’s
state. Bob will prepare a horizontally-polarized single photon when Alice’s
H-polarization detector has clicked. Given that Charlie’s state was |ψC〉 =
α|H〉+ β|V 〉, we have that

Pr( |ψB〉 = |H〉 | |ψ 2
C〉 ) = |〈H|ψC〉| = |α|2.

A similar calculation—based on Bob’s preparing a vertically-polarized single
photon when Alice’s V -polarization detector has clicked—gives

Pr( |ψB〉 = |V 〉 | |ψC〉 ) = |〈V |ψC〉|2 = |β|2.

Because |α|2 + |β|2 = 1, these two conditional probabilities—which represent
the only states that Bob will prepare—sum to one. Indeed, we could have used
that fact to find Pr( |ψB〉 = |V 〉 | |ψC〉 ) as 1− Pr( |ψB〉 = |H〉 | |ψC〉 ).

(b) To use the results from (a) to find ρ̂B(α, β), Bob’s density operator when Char-
lie’s state is |ψC〉, we proceed as follows. When Alice’s H-polarization detector
clicks, Bob’s state will be |H〉, and when her V -polarization detector clicks,
his state will be |V 〉. Thus, given that Charlie’s state is |ψC〉, Bob’s density
operator will be

ρ̂B(α, β) = Pr( |ψB〉 = |H〉 | |ψC〉 )|H〉〈H|+ Pr( |ψB〉 = |V 〉 | |ψC〉 )|V 〉〈V |
= |α|2|H〉〈H|+ |β|2|V 〉〈V |.

(c) With the result from (b), we can easily evaluate the fidelity of the measure-and-
prepare system conditioned on the value of Charlie’s state, i.e.,

F (α, β) ≡ 〈ψC |ρ̂B(α, β)|ψC〉.

We have that

F (α, β) = (α∗〈H|+β∗〈V |)(|α|2|H〉〈H|+|β|2|V 〉〈V |)(α|H〉+β|V 〉) = |α|4+|β|4.

(d) When Charlie’s state is random, and uniformly distributed over the Poincaré
sphere, i.e., it has a 3-D unit vector representation,

r =



r1
r2



2
≡



Re(α∗β)


   2Im(α∗β)  ,
r |α|2 − | |23 β

that is uniformly distributed over the unit sphere, we must regard our result
from (c) as the conditional fidelity given the value of Charlie’s state. To find
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the numerical value of the measure-and-prepare system’s average fidelity we
must average over all possible states for Charlie’s photon using the uniform
distribution on the Poincaré sphere. We start with

F̄ ≡
∫

F (α, β)
dr

r∈P 4π
. =

∫

r∈P
dr

|α|4 + |β|4
.

4π

Then we use

r =



r1
r2

 

sin(θ) cos(φ)
  =  sin(θ) sin(φ) , for 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π,
r3 cos(θ)





to obtain

|α|4
(

1 + r3
=

2

)2

=

(

1 + cos(θ)
2

2

)

,

and

|β|4 =
(

1− r3
2

)2

=

(

1− cos(θ)
2

2

)

.

¯Substituting these results into our previous expression for F gives us

∫ π ∫ 2π 1 + cos2(θ)
F̄ = dθ sin(θ) dφ

0 0 8π
=

∫ π

0

dθ sin(θ)
1 + cos2(θ)

= 2/3,
4

where the last equality used

∫ π

dθ sin(θ) =
0

− cos(θ)|π0 = 2

and
∫ π

π
dθ sin(θ) cos2(θ) = −[cos3(θ)/3] = 2/3.

0
0

It can be shown that no classical

∣

communication sche

∣

me between Alice and Bob
can lead to a higher average fidelity in Bob’s reproducing Charlie’s randomly-
chosen qubit state. To get higher average fidelity, Alice and Bob must share
entanglement and use qubit teleportation.

Problem 8.2

Here we will derive the fidelity of a measure-and-prepare approach to continuous-
variable quantum communication. Suppose that Charlie has a single-mode field in
the state |ψC〉 which he wishes to transmit to Bob. Because Bob is too far away for
reliable quantum transmission, Charlie sends his field mode to Alice—who is located
nearby—for her to measure via balanced heterodyne detection, i.e., by the positive
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operator-valued measurement (POVM) associated with the annihilation operator âC
of Charlie’s field mode. Alice’s outcome from this measurement is a complex-valued
random variable α. She sends this classical α value to Bob over a classical commu-
nication channel and Bob uses this information to prepare a single-mode field in the
coherent state |α〉.

(a) Finding p(α1, α2), the joint probability density function for α1 and α2, the real
and imaginary parts of the random variable α, as a function of |ψC〉 is trivial.
We know that the probability density for the outcome obtained from heterodyne
detection is

α
p(α1, α2) =

〈 |ρ̂C|α〉
,

π

where |α〉 is the coherent state, α1 and α2 are the real and imaginary parts of
α, and ρ̂C is the density operator for the âC mode. We are given a pure state
|ψC〉 for that mode, thus

2

p(α1, α2)
|〈α|ψC

=
〉|
.

π

(b) Expressing the density operator for Bob’s state, ρ̂B, in P -representation form
as a function of |ψC〉 is similarly trivial. Given the value of the heterodyne
measurement’s outcome, α, Bob’s state is the coherent state |α〉. Thus, because
α is random—with joint probability density function p(α1, α2) from (a) for its
real and imaginary parts—we have that

ρ̂B =

∫

dα1

∫

dα2 p(α1, α2)|α〉〈α|.

Identifying P (α, α∗) = p(α1, α2) we get can rewrite this as

ρ̂B =

∫

d2αP (α, α∗)|α〉〈α|,

and use (a) to get P (α, α∗) = |〈α|ψC〉|2/π.

(c) The fidelity of this measure-and-prepare system is

F (|ψC〉) ≡ 〈ψC |ρ̂B|ψC〉.

Using the result of (b) this becomes

α ψ 4
C

F (|ψC〉) =
∫

d2αP (α, α∗)|〈α|ψ 2 2
C〉 =

||
∫

d α
〈 | 〉|

.
π
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(d) When Charlie’s state is the coherent state |αC〉, we have that

|〈α|ψC〉|2 = |〈α|αC〉|2 = e−|α−αC |2 ,

so that result from (c) becomes

2 2

F (|αC〉
∫

d2 e− |α−αC |
) = α = 1/2,

π

where the last equality follows from
∫ ∞

dx e−A(x−b)2 =
−∞

√

π/A, for A > 0 and arbitrary b.

Problem 8.3

Here we shall begin a treatment of optimum binary hypothesis testing.

ˆ(a) The task here is straightforward. We will declare “state = |ψ 1〉” when the D−
measurement yields outcome −1. Given that the state of the system is |ψ1〉,
this will occur with probability,

ˆPr( say “state was |ψ 1〉” | state was |ψ1〉 ) = Pr(D = −1 | |ψ1〉) = |〈d .− | 2
−1 ψ1〉|

Similarly, we find that,

ˆPr( say “state was |ψ1〉” | state was |ψ−1〉 ) = Pr(D = 1 | |ψ 1〉) = |〈d1|ψ |21〉 .− −

The unconditional error probability now follows immediately:

Pr(e) = Pr(state was |ψ1〉 and say “state was |ψ−1〉”)

+ Pr(state was |ψ 1〉 and say “state was |ψ ”− 1〉 )

= Pr(state was |ψ1〉 ˆ) Pr(D = −1 | |ψ1〉)

〉 ˆ+ Pr(state was |ψ 1 ) Pr(D = 1− | |ψ−1〉)

1
=

2
|〈d−1|ψ1〉|2 +

1 2

2
|〈d1|ψ−1〉| .

(b) When |ψ 1〉 and |ψ1〉 are orthonormal we can make,−

D̂ − | |ψ 〉 D̂Pr( = 1 1 ) = 0 and Pr( = 1 | |ψ−1〉) = 0,

by choosing
|d−1〉 = |ψ−1〉 and |d1〉 = |ψ1〉.
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We then have that {|d 1〉, |d1〉} is an orthonormal set, so we have indeed found−
ˆeigenkets for an observable, D, on the reduced Hilbert space H. From (a) we

see that the unconditional error probability achieved by this decision operator
is Pr(e) = 0, i.e., we can perfectly distinguish between a pair of orthonormal
{|ψ 1〉, |ψ1〉} by making an appropriate observable measurement.−

(c) Now we are given a pair of state {|ψ−1〉, |ψ1〉} that are not orthogonal. Indeed
their inner product is,

〈ψ 1|ψ1〉 = cos2(θ)− sin2(θ) = cos(2θ),−

where 0 < 2θ < π/2. Using the expansions,

|d−1〉 = cos(φ)|x〉 − sin(φ)|y〉 and |d1〉 = sin(φ)|x〉+ cos(φ)|y〉,

which specify an arbitrary orthonormal basis for H as φ ranges from 0 to 2π,
and the results of (a) we have that,

|y〉

|x〉

|d1〉

|ψ1〉

|ψ
−1〉

|d
−1〉

Figure 2: Geometry of the optimal detection problem for θ = π/6

1
Pr(e) =

2
[cos(φ) cos(θ)− sin(φ) sin(θ)]2 +

1
[sin(φ) cos(θ)

2
− cos(φ) sin(θ)]2

1
= [cos2(φ) cos2(θ) + sin2(φ) sin2(θ) 2

2
− sin(φ) cos(φ) sin(θ) cos(θ)]

1
+ [sin2(φ) cos2(θ) + cos2(φ) sin2(θ) 2

2
− sin(φ) cos(φ) sin(θ) cos(θ)]

1
= [cos2(θ) + sin2(θ) 2 sin(2φ) sin(θ) cos(θ)]

2
−

1
= [1− sin(2φ) sin(2θ)].

2

It is now easy to optimize over φ, i.e., to optimize {|d 1〉, |d1〉}. Because 0 <−
θ < π/4, we have that sin(2θ) > 0. Thus, to minimize the error probability, we
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should make sin(2φ) = 1, i.e., we should choose φ = π/4, whence

|d−1〉 =
|x〉 − |y〉√

2
and |d1〉 =

|x〉+ |y〉√ ,
2

gives the optimum (minimum) error probability,

1
Pr(e) =opt 2

[1− sin(2θ)] =
1

2

[

1−
√

1− |〈ψ−1|ψ1〉|2 .

In Fig. 2, we have plotted the geometry of this optimal detection

]

problem when
θ = π/6.

Problem 8.4

Here we shall continue our treatment of optimum binary hypothesis testing.

(a) When |ψ1〉 = |n−1〉 and |ψ1〉 = |n1〉, where |n−1〉 and |n1〉 are photon number
states with n 1 6= n1, we have that ψ ψ = 0, so that the optimum decision− 〈 −1| 1〉
operator from Problem 8.3(b) achieves zero error probability. If we measure the

ˆnumber operator, N , then the outcome of this measurement will be n−1 when
the state is |n 1〉 and the outcome will be n1 when the state is |n1〉. So zero-−

ˆerror-probability performance can be achieved by making the N measurement
and saying “state was |n 1〉” when n 1 occurs, and saying “state was− − |n1〉”
when n1 occurs.

(b) When |ψ 1〉 = |α 1〉 and |ψ1〉 = α , where α and α are coherent states− − | 1〉 | −1〉 | 1〉
with 〈α−1|α1〉 = cos(2θ) for a θ value satisfying 0 < θ < π/4, we can immedi-
ately apply the result of Problem 8.3(c) to show that,

1
Pr(e) =

2
[1− sin(2θ)] =

1

2

[

1−
√

1− cos2(2θ)
]

=
1

2

[

1−
√

1− |〈α−1|α1〉|2 ,

gives the minimum achievable error probability.

]

(c) For OOK, we have that

〈α 1

√
|α1〉 = 〈0− | N〉 = e−N/2,

which yields,

1
Pr(e) =

2

[

1−
√

1− e−N
]

≈ 1
e−N , for N

4
≫ 1,

for the error probability of the optimum decision rule.

N̂Now, if we make the measurement when the state of the mode is |0〉 then
the outcome 0 will occur with probability one. Thus, for the given number-
operator-based decision rule, we have that,

Pr( say “state was
√
| N〉” | state was |0〉 ) = 0.
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√ N̂On the other hand, if we make the measurement when the state of the mode
is | N〉 then the outcome will be zero with probability |〈0|

√
N〉|2 = e−N . Thus,

for the given number-operator-based decision rule, we have that,

Pr( say “state was |0 ”
√

〉 | state was | N〉 ) = e−N .

From these conditional probability results we get the unconditional error prob-
ability via,

Pr(e) = Pr(state = |0〉) Pr( say “state was
√
| N〉” | state was |0〉 )

= Pr(state =
√
| N〉) Pr( say “state was |0〉” | state was |

√
N〉 )

1
=

2
0 +

1

2
e−N =

1
e−N .

2

So, for N ≫ 1 this number-operator-based decision rule achieves an error prob-
ability only a factor of two larger than that of the optimum receiver.

(d) For BPSK, we have that

〈α 1

√
|α1〉 =− 〈− N |

√
N〉 = e−2N ,

which yields,

1
Pr(e) =

2

[

1−
√

1− e−4N
]

≈ 1
e−4N , for N ≫ 1,

4

for the error probability of the optimum decision rule.

Now, if we make the â1 measurement when the state is
√

| − N〉, then the
outcome is a Gaussian random variable with mean −

√
N and variance 1/4.

Thus, for the quadrature-based decision rule, we find that,

Pr( say “state was
√
| N〉” | state was | −

√
N〉 ) =

∫ ∞

0

dα1
e−2(α1+

√
N)2

√

π/2

=

∫ ∞

√
4N

dt
e−t2/2

√
2π

= Q(
√
4N),

where the second equality follows from the change of variables t = 2(α1+
√
N).

Likewise, if we make the â1 measurement when the state is
√
| N〉, then the

outcome is a Gaussian random variable with mean
√
N and variance 1/4. Thus,

for the quadrature-based decision rule, we find that,

Pr( say “state was
√

| − N〉” | state was |
√
N〉 ) =

∫ 0

−∞
dα1

e−2(α1−
√
N)2

√

π/2

=

∫ ∞

√
4N

dt
e−t2/2

√
2π

= Q(
√
4N),
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where the second equality follows from the change of variables t = −2(α1

√
− N).

From these conditional probability results we get the unconditional error prob-
ability via,

Pr(e) = Pr(state =
√

| − N〉) Pr( say “state was |
√
N〉” | state was |0〉 )

= Pr(state =
√
| N〉) Pr( say “state was | −

√
N〉” | state was |

√
N〉 )

1
=

2
Q(

√
4N) +

1

2
Q(

√
4N) = Q(

√
4N).

Because Q(x) ≤ 1e
2

−x2/2, for x ≥ 0, we find that,

1
Pr(e) ≤ e−2N ,

2

for this quadrature-based decision rule. Comparison with the performance of
the optimum system reveals that the quadrature measurement needs about 3 dB
more average photon number to achieve the same performance as the optimum
system for BPSK.

Problem 8.5

Here we shall consider a different variant of the binary hypothesis testing problem,
one involving a positive operator-valued measurement instead of an observable.

(a) Because a and b are positive and (|φ〉〈φ|)† = |φ〉〈φ| for any ket vector |φ〉, it is
ˆ ˆ ˆ ˆclear that Π 1, Π1, and Πe are all Hermitian operators, and that 〈ψ|Π ψ− j| 〉 ≥ 0

for j = −1, 1, e and all |ψ〉. So, all that remains to be done is to see if a and b
can be chosen to make them a resolution of the identity. We have that,

ˆ ˆ ˆΠ−1 +Π1 +Πe = a|ξ−1〉〈ξ−1|+ a|ξ1〉〈ξ1|+ b|x〉〈x|

= 2a sin2(θ)|x〉〈x|+ 2a cos2(θ)|y〉〈y|+ b|x〉〈x|.

In the {|x〉, |y〉} orthonormal basis, we have that,

Î2 = |x〉〈x|+ |y〉〈y|.
ˆ ˆ ˆIt follows that {Π 1,Π1,Πe} will resolve the identity—and hence be a POVM−

on H—if and only if,

2a sin2(θ) + b = 1 and 2a cos2(θ) = 1.

These conditions are satisfied by,

a = 1/2 cos2(θ) and b = 1− tan2(θ).

Note that 0 < θ < π/4 implies that tan2(θ) < 1, ensuring that b > 0.
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(b) For the given decision rule we have that,

ˆPr( say “state was |ψ1〉” | state was |ψ 1〉 ) = 〈ψ− −1|Π1|ψ−1〉

= a|〈ψ−1|ξ1〉|2 = a| − cos(θ) sin(θ) + sin(θ) cos(θ)|2 = 0.

Likewise, we have that,

ˆPr( say “state was |ψ ” state was ψ ) = ψ Π ψ−1〉 | | 1〉 〈 1| −1| 1〉

= a|〈ψ1|ξ 1〉|2 = a| − cos(θ) sin(θ) + sin(θ) cos(θ)− |2 = 0.

Thus the POVM decision rule will never be incorrect when it says “state was
|ψ 1〉” or when it says “state was− |ψ1〉.”

|ξ
−1〉

|ψ
−1〉

|ψ1〉

|ξ1〉

|ξe〉

Figure 3: Geometry of the optimal POVM for θ = π/6: a = b = 2/3 in this case.

These results come about because the ket vector |ξ−1〉 associated with the
POVM outcome −1 is orthogonal to |ψ1〉, and the ket vector |ξ1〉 associated
with the POVM outcome 1 is orthogonal to |ψ−1〉. Because |ψ−1〉 and |ψ1〉
are not orthogonal, it follows that |ξ 1〉 and |ξ1〉 will not be orthogonal either.−
Thus, to form them into a measurement, we need a POVM construction as
opposed to an observable. In Fig. 3 we have sketched the geometry of this
problem for the case θ = π/6. Here we find that a = 1/2 cos2(θ) = 2/3 and
b = 1 − tan2(θ) = 2/3, so that the POVM has the geometry we explored in
Problem 1.8.

(c) Our next task is to find the error probability of the POVM decision rule. We
begin with the conditional error probabilities:

ˆPr( say “error” | state = |ψ 1〉 ) = 〈ψ− −1|Πe|ψ−1〉

= b|〈ψ 1|x〉|2 = b cos2(θ) = cos2(θ)− sin2(θ) = cos(2θ),−

and

ˆPr( say “error” | state = |ψ1〉 ) = 〈ψ1|Πe|ψ1〉

= b|〈ψ1|x〉|2 = b cos2(θ) = cos2(θ)− sin2(θ) = cos(2θ).
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Because both conditional error probabilities are the same, they equal the un-
conditional error probability, i.e.,

Pr(e) ≡ Pr(say “error”) = cos(2θ).

(d) Our final task is very simple. For

|ψ 1〉 = cos(θ)|x〉 − sin(θ)|y〉 and |ψ1〉 = cos(θ)|x〉+ sin(θ)− |y〉,

we have that cos(2θ) = 〈ψ−1|ψ1〉, and for |ψ−1〉 =
√

|− N〉 and |ψ1〉 = |
√
N〉 we

have that 〈ψ 1|ψ1〉 = e−2N . Thus, from (c), we have that Pr(e) = e−2N . This−
error probability is higher than what we found for the minimum error probability
rule in Problem 8.2(d), but “error” in that problem meant confusing |ψ−1〉 for
|ψ1〉 or vice versa, whereas “error” here means that our receiver says it cannot
decide between the two hypotheses.
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