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Reading: For entanglement and measures of entanglement:

• L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge
University Press, Cambridge, 1995), Sect. 12.14.

• D. Bouwmeester, A. Ekert, and A. Zeilinger, The Physics of Quantum Infor-

mation (Springer Verlag, Berlin, 2000), Sects. 3.4 and 3.5.

For qubit teleportation:

• C.C. Gerry and P.L. Knight, Introductory Quantum Optics (Cambridge Uni-
versity Press, Cambridge, 2005) Sect. 11.3.

• D. Bouwmeester, A. Ekert, and A. Zeilinger, The Physics of Quantum Infor-

mation (Springer Verlag, Berlin, 2000), Sects. 3.3 and 3.7.

For quadrature teleportation:

• D. Bouwmeester, A. Ekert, and A. Zeilinger, The Physics of Quantum Infor-

mation (Springer Verlag, Berlin, 2000), Sect. 3.9.

For optimum binary hypothesis testing:

• C.W. Helstrom, Quantum Detection and Estimation Theory (Academic Press,
New York, 1976) Sects. 4.2 and 6.1.

Problem 8.1

Here we will derive the fidelity of a measure-and-prepare approach to qubit transmis-
sion. Suppose that Charlie has a single photon whose polarization state is

|ψC〉 = α|H〉+ β|V 〉,

where |α|2 + |β|2 = 1 and |H〉 and |V 〉 denote horizontally-polarized and vertically-
polarized single photon states, respectively. Charlie wants to transmit this state
to Bob, but Bob is too far away for reliable fiber-optic transmission of that single
photon. Instead, Charlie gives his photon to Alice—who is located nearby—for her
to measure in the H/V basis using a polarizing beam splitter and unity quantum
efficiency photodetectors, as shown in Fig. 1. If Alice gets a click on her H detector,
she sends Bob a classical message saying that he should prepare an H photon as his
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replica of |ψC〉. If Alice gets a click on her V detector, then she sends Bob a classical
message saying that he should prepare a V photon as his replica of |ψC〉. Thus, Bob’s
state after this measure-and-prepare protocol is

{ |H〉, if Alice got an H click
|ψB〉 =

|V 〉, if Alice got a V click.

Figure 1: Alice’s H/V polarization-measurement system. PBS denotes polarizing
beam splitter.

(a) Find Pr( |ψB〉 = |H〉 | |ψC〉 ) and Pr( |ψB〉 = |V 〉 | |ψC〉 ), i.e., the probabilities
for Bob’s two possible states conditioned on the value of Charlie’s state. Express
your answer in terms of α and β.

(b) Use your results from (a) to find ρ̂B(α, β), Bob’s density operator when Charlie’s
state is |ψC〉. Express your answer in terms of α and β.

(c) Use your result from (b) to evaluate the fidelity of the measure-and-prepare
system conditioned on the value of Charlie’s state, i.e.,

F (α, β) ≡ 〈ψC |ρ̂B(α, β)|ψC〉.

Express your answer in terms of α and β.

(d) Now suppose that Charlie’s state is random, and uniformly distributed over the
Poincaré sphere, i.e., it has a 3-D unit vector representation,



r ∗
1



)
r = r2  ≡



2Re(α β
  2Im(α∗β)
r3 |α|2 − |β|2



 ,
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that is uniformly distributed over the unit sphere. Find the numerical value of
the measure-and-prepare system’s average fidelity, i.e.,

)
F̄ ≡

∫

F (α, β
dr

r∈P

.
4π

HINT:Write F (α, β) as a function of r, then express r in spherical coordinates,
i.e.,



r1
 

sin(θ) cos(φ)
r =  r2  =  sin(θ) sin(φ)



 , for 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π,
r3 cos(θ)

and then integrate over the Poincaré sphere using spherical coordinates, viz.,

F̄ ≡
∫

F (α, β)
dr

r∈P 4π
. =

∫ π

0

dθ sin(θ)

∫ 2π

0

dφ
F (θ, φ)

.
4π

Problem 8.2

Here we will derive the fidelity of a measure-and-prepare approach to continuous-
variable quantum communication. Suppose that Charlie has a single-mode field in
the state |ψC〉 which he wishes to transmit to Bob. Because Bob is too far away for
reliable quantum transmission, Charlie sends his field mode to Alice—who is located
nearby—for her to measure via balanced heterodyne detection, i.e., by the positive
operator-valued measurement (POVM) associated with the annihilation operator âC
of Charlie’s field mode. Alice’s outcome from this measurement is a complex-valued
random variable α. She sends this classical α value to Bob over a classical commu-
nication channel and Bob uses this information to prepare a single-mode field in the
coherent state |α〉.

(a) Find p(α1, α2), the joint probability density function for α1 and α2, the real and
imaginary parts of the random variable α, as a function of |ψC〉.

(b) Express the density operator for Bob’s state, ρ̂B, in P -representation form as a
function of |ψC〉.

(c) Use your result from (b) to find an expression for the fidelity of this measure-
and-prepare system, i.e.,

F (|ψC〉) ≡ 〈ψC |ρ̂B|ψC〉,

as an integral involving a function of |ψC〉.
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(d) Suppose that Charlie’s state is the coherent state |αC〉. Use your answer from
(c) to obtain a numerical value for the resulting fidelity, F (|αC〉), of the measure-
and-prepare system.

An integral of note:

∫ ∞

dx e−A(x−b)2 =
−∞

√

π/A, for A > 0 and arbitrary b.

Problem 8.3

Here we shall begin a treatment of optimum binary hypothesis testing. Suppose
that a quantum system is known to be in either state |ψ−1〉 or |ψ1〉, where |ψ−1〉 6=
|ψ1〉. Let hypothesis H−1 denote “state = |ψ−1〉” and hypothesis H1 denote “state =
|ψ1〉.” Assume that these two hypotheses are equally likely, i.e., before we make any
measurement on the quantum system, it has probability 1/2 of being in state |ψ−1〉
and probability 1/2 of being in state |ψ1〉. Our task is to make a measurement on
this system to determine—with the lowest probability of being wrong—whether the
system’s state was |ψ−1〉 or |ψ1〉 before we make our measurement. (The projection
postulate implies that the system’s state will likely be changed by our having made
a measurement.)

Because we know the system can only be in |ψ−1〉 or |ψ1〉 we can—and we will—
limit all our analysis in the reduced Hilbert space,

H ≡ span(|ψ−1〉, |ψ1〉),

i.e., to the Hilbert space of kets of the form

|ψ〉 = α|ψ−1〉+ β|ψ1〉,

where α and β are complex numbers.
Define a decision operator,

D̂ ≡ |d1〉〈d1| − |d−1〉〈d−1|,

where {|d−1〉, |d1〉} are a pair of orthonormal kets on the reduced Hilbert space H.
ˆClearly, D ˆis an observable onH. Suppose that we measure D on the quantum system

under study. If the outcome of this measurement is −1, we will say that the state
before the measurement was |ψ−1〉. If the outcome of this measurement in 1, we will
say that the state before the measurement was |ψ1〉.

(a) Find the conditional probabilities,

|ψ 〉 | ˆPr( say “state was −1 ” state was |ψ1〉 ) = Pr(D = −1 | |ψ1〉),

ˆPr( say “state was |ψ1〉” | state was |ψ−1〉 ) = Pr(D = 1 | |ψ−1〉).
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and the unconditional error probability,

Pr(e) ≡ ˆPr(state was |ψ−1〉) Pr(D = 1 | |ψ−1〉)

+ Pr(state was |ψ1〉) Pr(D̂ = −1 | |ψ1〉).

(b) Suppose that 〈ψ−1|ψ1〉 = 0, so that {|ψ−1〉, |ψ1〉} is an orthonormal basis for H.
Find the measurement eigenkets {|d−1〉, |d1〉} that minimize your error prob-
ability expression from (a). [The error probability of your optimum decision
operator for this case shows why orthonormal kets are said to be “distinguish-
able.”]

(c) Suppose that |ψ−1〉 and |ψ1〉 are normalized (unit length), but not orthogonal.
In particular, let {|x〉, |y〉} be an orthonormal basis for H, and assume that,

|ψ−1〉 = cos(θ)|x〉 − sin(θ)|y〉 and |ψ1〉 = cos(θ)|x〉+ sin(θ)|y〉,

where 0 < θ < π/4. Using the expansions,

|d−1〉 = cos(φ)|x〉 − sin(φ)|y〉 and |d1〉 = sin(φ)|x〉+ cos(φ)|y〉,

where 0 ≤ φ < 2π, and your Pr(e) result from (a) find the φ value—hence the
{|d−1〉, |d1〉}—that minimizes the error probability for this case.

[Hint: By assiduous use of trig identities, you should be able to reduce the error
probability expression to the following form:

1
Pr(e) = [1− sin(2φ) sin(2θ)],

2

which is easily minimized over φ.]

Problem 8.4

Here we shall continue our treatment of optimum binary hypothesis testing for equally-
likely hypotheses, H−1 = state is |ψ−1〉 and H1 = state is |ψ1〉. Suppose that the quan-
tum system considered in Problem 8.3 is a single-mode optical field with annihilation
operator â.

(a) Let |ψ−1〉 = |n−1〉 and |ψ1〉 = |n1〉 be photon number states with n−1 6= n1.
ˆShow that making the number operator measurement, N ≡ â†â, on the single-

mode field allows a zero-error-probability decision to be made as to whether the
state before the measurement was |n−1〉 or |n1〉.

(b) Let |ψ−1〉 = |α−1〉 and |ψ1〉 = |α1〉 be coherent states with 〈α−1|α1〉 = cos(2θ)
for a θ value satisfying 0 < θ < π/4. Find the error probability achieved by
the minimum-error-probability decision operator for deciding whether the state
before the measurement was |α−1〉 or |α1〉.
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(c) Evaluate your error prob√ability from (b) when on-off keying (OOK) is used:
|α−1〉 = |0〉 and |α1〉 = | N〉, i.e., when the two coherent states we are trying
to distinguish are the vacuum state, and a coherent state with average photon
number N . Compare this error probability with what is achieved when we

N̂make the measurement and s
outcome 0 and say “state was

√ay “state was |0〉” when this measurement yields
| N〉” when this measurement yields a non-zero

outcome.

[Hint: First find the conditional error probabilities,

Pr( say “state was |0〉” | state was
√
| N〉 ),

and
Pr( say “state was

√
| N〉” | state was |

√
0〉 ).

and then find the unconditional error probability using these intermediate re-
sults.]

(d) Evaluate your error√probability from (b) when binary phase-shift keying (BPSK)
is used: |α−1〉 = |− N〉 and |α1〉 = |

√
N〉. Compare this error probability with

what is achieved when we make the â1 = Re(â) measurement and say “state
was |−

√
√ N〉” when this measurement yields a negative outcome and say “state

was | N〉” when this measurement yields a non-negative outcome. Express
your answer for the homodyne receiver in terms of

2

Q(x ≡
∫ ∞ e−t2/

) dt
x

√ ,
2π

i.e., the probability that a zero-mean, unity-variance Gaussian random variable
exceeds x.

[Hint: First find the conditional error probabilities,

Pr( say “state was
√

| − N〉” | state was |
√
N〉 ),

and
Pr( say “state was

√
| N〉” | state was | −

√
N〉 ).

and then find the unconditional error probability using these intermediate re-
sults.]

Problem 8.5

Here we shall consider a different variant of the binary hypothesis testing problem.
Suppose, as in Problem 8.3, that a quantum system is known to be in either state
|ψ−1〉 or |ψ1〉, where |ψ−1〉 =6 |ψ1〉. Let hypothesis H−1 denote “state = |ψ−1〉” and
hypothesis H1 denote “state = |ψ1〉.” Assume that these two hypotheses are equally
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likely, i.e., before we make any measurement on the quantum system, it has probability
1/2 of being in state |ψ−1〉 and probability 1/2 of being in state |ψ1〉. Our task is
still to make a measurement on this system to determine whether the system’s state
was |ψ−1〉 or |ψ1〉 before we make our measurement. Now, however, we do not want
to make any mistakes, i.e., when we say “state was |ψ−1〉” we must be correct, and
when we say “state was |ψ1〉” we must also be correct. This does not require that we
limit ourselves to orthonormal states |ψ−1〉 and |ψ1〉, because we will also allow our
measurement outcome to be “error,” meaning it cannot reliably determine whether
the state was |ψ−1〉 or |ψ1〉. In other words, we will require a measurement on the
two-dimensional reduced Hilbert space H that has three possible outcomes: “state
was |ψ−1〉,” “state was |ψ1〉,” and “error.”

Assume that,

|ψ−1〉 = cos(θ)|x〉 − sin(θ)|y〉 and |ψ1〉 = cos(θ)|x〉+ sin(θ)|y〉,

where 0 < θ < π/4, as in Problem 8.3(c), where |x〉 and |y〉 are an orthonormal basis
for H. Define a pair of kets,

|ξ−1〉 = − sin(θ)|x〉+ cos(θ)|y〉 and |ξ1〉 = − sin(θ)|x〉 − cos(θ)|y〉

ˆ ˆ ˆand a set of operators {Π−1,Π1,Πe},

Π̂−1 ≡ a|ξ−1〉〈ξ−1|,

Π̂1 ≡ a|ξ1〉〈ξ1|,

Π̂e ≡ b|x〉〈x|,

where a and b are positive constants.

(a) Find a and b such that {Π̂−1, Π̂1, Π̂e} is a positive operator-valued measure
(POVM) on the reduced Hilbert space H, i.e., find the values of a and b for
which

Π̂† ˆ
j = Πj , for j = −1, 1, e,

〈ψ|Π̂j|ψ〉 ≥ 0, for j = −1, 1, e and all |ψ〉,
and

ˆ ˆ ˆ ˆΠ−1 +Π1 +Πe = I2,

ˆwhere I2 is the identity operator on H.

ˆ ˆ ˆ(b) When we measure {Π−1,Π1,Πe}—with a and b as found in (a), so that these
operators form a POVM and hence represent a measurement—and the state of

7



the quantum system is |ψ〉 ∈ H, the outcome will be either −1, 1, or e, with
the following probabilities:

Pr(outcome = − ˆ1) = 〈ψ|Π−1|ψ〉,

ˆPr(outcome = 1) = 〈ψ|Π1|ψ〉,

Pr(outcome = e) = 〈ψ|Π̂e|ψ〉.

Suppose that we measure this POVM on our quantum system. If the mea-
surement outcome is −1, we will say “state was |ψ−1〉.” If the measurement
outcome is 1, we will say “state was |ψ1〉.” If the measurement outcome is e,
we will say “error.” Show that this decision procedure will never be incorrect
when it says “state was |ψ−1〉,” or when it says “state was |ψ1〉.”

(c) For the POVM decision rule from (b), find the unconditional error probability,
Pr(outcome = “error”).

(d) Evaluate your error probability from (c) when ψ−1

√
| 〉 = | − N〉 and |ψ1〉 =

|
√
N〉, for

√
| ± N〉 being coherent states.
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