
Massachusetts Institute of Technology
Department of Electrical Engineering and Computer Science

6.453 Quantum Optical Communication

Problem Set 5 Solutions
Fall 2016

Problem 5.1
Here we shall derive the signal-to-noise ratio (SNR) optimality of squeezed states for
quadarature measurements.

(a) We know that â = â1 + jâ2, with â1 and â2 Hermitian, and that [â1, â2] = j/2.
Thus we have that,

〈â†â〉 = 〈(â1 − jâ2)(â1 + jâ2)〉.
Multiplying out and using the commutator we get,

〈â†â〉 = 〈â21〉+ 〈â22〉 − 1/2

Because mean-squared values equal variances plus squared-mean values we then
have,

〈â†â〉 = 〈∆â21〉+ 〈â1〉2 + 〈∆â22〉+ 〈â2〉2 − 1/2.

Rearranging terms, and using the average photon number constraint, we find
that,

N + 1/2
SNR

− 〈∆â2≤ 2〉 − 〈â2〉2 ,
〈 2 1
∆â1

−
〉

with equality if and only if 〈â†â〉 = N . By making 〈â†â〉 = N and 〈â2〉 = 0, we
can increase the SNR to,

N + 1/2
SNR =

− 〈∆â22〉 −
〈∆â2

1.
1〉

(b) For fixed N and 〈∆â21〉, the SNR expression we have just derived is maximized
by a minimum uncertainty state, i.e., one which satisfies 〈∆â21〉〈∆â22〉 = 1/16,
in which case

N + 1/2
SNR =

〈∆â21〉
− 1

1
(4〈∆â21〉)2

− .

Defining x = 〈∆â21〉, we can differentiate the preceding SNR expression to ob-
tain,

dSNR

dx
= −N + 1/2

x2
+

1
,

8x3

which has a unique root at x = 1/8(N + 1/2). Differentiating a second time
gives,

d2SNR

dx2
=

2(N + 1/2)

x3
− 3

,
8x4

which equals −83(N + 1/2)4 < 0 at x = 1/8(N + 1/2), so that the stationary
point we have found is a maximum. The resulting optimal SNR value is then
found, by substitution, to be SNR = 4N(N + 1).
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(c) For the squeezed state |β;µ, ν〉, we know that

〈â1〉 = Re(µ∗β − νβ∗),

2

〈∆â21
|µ− ν|〉 = ,

4

〈â†â〉 = |µ∗β − νβ∗|2 + |ν|2.

Substituting in β =
√
N(N + 1), µ = (N + 1)/

√
2N + 1, and ν = N/

√
2N + 1,

we get

〈â1〉 =
√
N(N + 1)/(2N + 1),

〈∆â21〉 = 1/4(2N + 1),

〈â†â〉 = N(N + 1)/(2N + 1) +N2/(2N + 1) = N.

This state therefore has N photons on average, and its quadrature-measurement
SNR equals the optimal value 4N(N + 1).

(d) For the coherent state
√
| N〉 we have,

〈â1〉 = Re(
√
N) =

√
N,

〈∆â21〉 = 1/4,

〈â†â〉 = N.

This state therefore has N photons on average, and its quadrature-measurement
SNR equals 4N . The optimal squeezed state has a larger quadrature-measurement
SNR by a factor of N + 1; for N � 1, this is an enormous SNR advantage.

Problem 5.2
Here we shall introduce the notion of normally-ordered forms.

(a) This is a straightforward exercise. We have that

F̂ ≡ ââ†â =
(
â†â+

[
a,ˆ â†

and

])
â = â†â2 + a,ˆ

F̂ ≡ ââ†â = â
(
ââ† −

[
a,ˆ â†

])
= â2â† − a,ˆ

whence
F (n)(â†, â) = â†â2 + a,ˆ
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and
F (a)(a,ˆ â†) = â2â† − a,ˆ

ˆBecause F = F (n)(â†, â) we have that,

〈α|F̂ |α〉 = 〈α|F (n)(â†, â)|α〉 = 〈α|â†â2 + â|α〉

= α∗α2 + α,

where the last equality follows from (repeated) use of the eigen relations,

â|α〉 = α|α〉 and 〈α|â† = 〈α|α∗.

(b) Using the coherent-state identity resolution twice, we get

αˆ ˆˆ ˆG = GI =

∫ ∫
d2

I
π

d2β ˆα
π
〈 |G|β〉 |α〉〈β|.

ˆ(c) We know that F = F (n)(â†, â), thus

〈 ˆα|F |β〉 = 〈α|F (n)(â†, â)|β〉 = 〈α|â†â2 + â|β〉 = (α∗β2 + β)〈α|β〉.

Using F (n)(α∗, α) = α∗α2 + α, from (a), with α∗ and α treated as independent
variables we now get,

〈 | ˆ| 〉 (n) ∗ 〈 | 〉 (n) ∗ −(|α|2 2 ∗
α F β = F (α , β) α β = F (α , β)e +|β| )/2+α β,

where the last result uses the coherent-state inner product that we have derived
in a previous problem set.

(d) The density operator is an Hermitian operator whose eigenvalues form a proba-
bility distribution. Moreover, 〈ψ|ρ̂|ψ〉, for any unit-length ket |ψ〉, is the proba-
bility that the oscillator will be found in state |ψ〉. Because the coherent states
are normalized to unit length, we have that 〈α|ρ̂|α〉 ≥ 0. Because the coherent
states resolve the identity and the trace of an operator can be computed by
summing its matrix elements in this overcomplete basis, we have that,∫

d2α
,

π
〈α|ρ̂|α〉 = tr(ρ̂) = 1

where the last equality was proven on a previous problem set. It follows that
p(α1, α2) ≡ ρ(n)(α∗, α)/π = 〈α|ρ̂|α〉/π is a proper joint probability density
for two real-valued random variables. We shall see in class that this density
characterizes the measurement statistics of heterodyne detection, viz., a joint
measurement of both quadratures of the oscillator.
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Problem 5.3
Here we will introduce the three most important characteristic functions for quantum
statistical analyses.

(a) We have that [a,ˆ â†] = 1, so that [−ζ∗a,ˆ ζâ†] = −|ζ|2. It follows that,

[−ζ∗a,ˆ [−ζ∗a,ˆ ζâ†]] = [ζâ†, [−ζ∗a,ˆ ζâ†]] = 0,

and hence (from the identities given in the problem statement),

e−ζ
∗â+ζâ† ∗ † 2 † ∗ 2

= e−ζ âeζâ e|ζ| /2 = eζâ e−ζ âe−|ζ| /2.

Multiplying these equalities by ρ̂ and taking the trace we obtain the relations
we were seeking:

χρ (ζ∗, ζ) = χρ |2(ζ∗, ζ)e|ζ /2
W A = χρN(ζ∗, ζ)e−|ζ|

2/2.

It is now easy to use these relations to find all three characteristic functions for
the coherent-state density operator, ρ̂ = |α〉〈α|. We start with the normally-
ordered characteristic function,

ρ ∗ ≡
(

ζâ† −ζ∗â
) (

| 〉〈 | ζâ† −ζ∗χN(ζ , ζ) tr ρê e = tr α α e e â

= 〈α|eζâ†e−ζ∗â

)
|α〉 = eζα

∗−ζ∗α.

We then immediately obtain,

χρ
2

(ζ∗
2 ∗ ∗

W , ζ) = χρ (ζ∗, ζ)e−|ζ| /2 = eζα −ζ α
N

−|ζ| /2,

and
χρ

2

(ζ∗, ζ) = χρ (ζ∗, ζ)e−|ζ| /2 ζ
A W = e α∗−ζ∗α−|ζ|2 .

(b) We have that,

χρA(ζ∗
∗ †

, ζ) ≡ tr
(
ρê−ζ âeζâ

)
.

Introducing,

Î =

∫
d2α

α
π
| 〉〈α|,
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in between the exponentials in the χρA definition yields,

χρA(ζ∗, ζ) =

∫
d2α ∗

tr
π

(
ρê−ζ â|α〉〈α|eζâ†

)
=

∫
d2α ∗

tr
π

(
ρ̂|α〉〈α|e−ζ α+ζα∗

)
=

∫
d2α ∗

α
π
〈 |ρ̂|α〉e−ζ α+ζα∗

∫ ∫
(n) e2jζ2α1−2jζ1α2

= dα1 dα2 ρ (α∗, α)
π

=
F [ρ(n)(α∗, α)]

,
π

∣∣∣
f1 = −ζ2/π
f2 = ζ1/π

where F [x(t1, t2)] denotes the 2-D Fourier transform,

∣∣

X(f1, f2) = F [x(t1, t2)] ≡
∫ ∫

dt1 dt2 x(t1, t2)e
−j2π(f1t1+f2t2).

For future use, we note that the standard

x(t1, t2) = F−1[X(f1, f2)] ≡

can be used to show that

∫ ∫ 2-D inverse Fourier transform,

df df X(f , f )ej2π(f1t1+f2t2)1 2 1 2 ,

e−2jζ2α1+2jζ1α2

ρ(n)(α∗, α) =

∫ ∫
dζ dζ2 χ

ρ
1 A(ζ∗, ζ) .

π

(c) All we need to do is to show that we can recover the diagonal elements in the
coherent-state representation from

ρ̂ =

∫
d2ζ †

χρ (ζ∗, ζ)e−ζâ eζ
∗â.

π A

This calculation is simple:

〈α|ρ̂|α〉 =

∫
d2ζ †

χρ
π A(ζ∗, ζ)〈α|e−ζâ eζ∗â|α〉

=

∫
d2ζ ∗

χρA(ζ∗, ζ)e−ζα +ζ∗α

π∫ ∫
e−2jζ2α1+2jζ1α2

= dζ1 dζ2 χ
ρ
A(ζ∗, ζ) ,

π

which equals ρ(n)(α∗, α), as was to be shown, from the result of (b).
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(d) If ρ̂ has a proper P -representation, then

χρN(ζ∗, ζ) ≡ †
tr
(
ρêζâ e−ζ

∗â
)

∫
∗

d2
†

= αP (α, α∗)tr
(
|α〉〈α|eζâ e−ζ â

)
=

∫
d2

∗
αP (α, α∗)eζα −ζ

∗α

=

∫
d2αP (α, α∗)e2jζ2α1−2jζ1α2 ,

again a 2-D Fourier transform relationship. Keeping track of the normalization
constant (factors of π in each Fourier dimension), we have that the inverse
Fourier relationship is

ζ
P α, α∗) =

∫
d2

( ρ
2 χN(ζ∗, ζ)e−ζα

∗+ζ∗α.
π

(e) This part is trivial. We are told that the characteristic function for the classical
outcome of the âθ measurement is

Mαθ(jv) = tr ρêjvâθ .

Substituting in the definition âθ = [aeˆ −jθ +

(
â†ejθ

)
]/2, we see that

θ

M (jv) = tr
(
ρê−(−jve

−j /2)â+(jvejθ/2)â†
αθ

)
= χρW (−jve−jθ/2, jvejθ/2).

Problem 5.4
Here we shall that it is easy to calculate number-operator and quadrature-operator
measurement statistics when the oscillator has a proper P -representation

(a) Suppose that the quantum harmonic oscillator is in the coherent state |α〉 with
ˆclassical probability density p(α1, α2). If O is any observable, then the condi-

tional probability that the outcome of this measurement will be the eigenvalue
o, given that the oscillator is in the state |α〉, is |〈o|α〉|2. (Without appre-
ciable loss of generality, we have assumed that the eigenspace associated with
the eigenvalue o is one-dimensional, and spanned by the unit-length eigenkets
{|o〉}.) The unconditional probability that we get outcome o is therefore,∫ ∫

dα1 dα2 p(α1, α2)|〈o|α〉|2 = 〈o|
(∫

d2α p(α1, α2)|α〉〈α|
)
|o〉.
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ˆBut we know that the unconditional probability for the O measurement to yield
outcome o is given by, 〈o|ρ̂|o〉, where ρ̂ is the oscillator’s density operator. It
follows, because |o〉 can be an arbitrary unit-length ket, that

ρ̂ = d2α p(α1, α2)|α〉〈α|,

specifies the density operator

∫
in terms of the classical probability density for

the state to be |α〉. We are given that the density operator has a proper P -
representation, i.e.,

ρ̂ =

∫
d2αP (α, α∗)|α〉〈α|,

so it is clear that p(α1, α2) = P (α, α∗) is the probability density that the state
is |α〉.

(b) When we are in the coherent state |α〉 ˆtheN -measurement has Poisson statistics,

n

ˆPr(N outcome = n | state is |α ) =
|α|2〉 2

e−|α| , for n = 0, 1, 2, . . .
n!

Averaging over the proper P -representation—which specifies the probability
density that the state will be |α〉—then gives us the unconditional probability
distribution: ∫

|α|2nˆPr(N outcome = n) = d2αP (α, α∗)
2

e−|α| , for n = 0, 1, 2, . . .
n!

ˆBecause the variance of the N measurement equals the mean of the conditional
variance plus the variance of the conditional mean, and the variance of the
conditional mean is ∫non-negative, we have that

〈 ˆ ˆ∆N2〉 ≥ d2αP (α, α∗)var(N measurement | state is |α〉 )

= d2αP (α, α∗)|α|2,

where the last equalit

∫
y uses the fact that the conditional distribution for the

N̂ -measurement is Poisson with mean (and hence variance) |α|2. By a similar
ˆiterated expectation calculation we have that the mean of the N -measurement

equals the∫ mean of its conditional mean, viz.,

〈N̂〉 = d2αP (α, α∗ ˆ)E(N measurement | state is |α〉 ) = d2αP (α, α∗)|α|2,

completing the proof that states with proper P -representations

∫
satisfy,

〈 ˆ∆N2〉 ≥ 〈N̂〉.

| 〉 〈 ˆ 〉 〈 ˆNote that the number state n has N = n and ∆N2〉 = 0, and so the density
operator ρ̂ = |n〉〈n| does not have a proper P -representation for n > 0.
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(c) When we are in the coherent state |α〉, the probability density for the outcome
of the â1 quadrature measurement is Gaussian with mean α1 = Re(α) and
variance 1/4. Thus the unconditional density function for this measurement
outcome to be a1, when the density operator has a proper P -representation is,∫

2 exp[−2(a 2
∗ 1

1
− α1) ]

p(â1 outcome = a ) = d αP (α, α ) √ .
π/2

Via the same iterated expectation approach used in (b), we know that the
variance of the â1 measurement equals or exceeds the mean of the conditional
variance, i.e.,

〈∆â2〉 ≥
∫
d21 αP (α, α∗)var( â1 measurement | state is |α〉 )

=

∫
d2αP (α, α∗)1/4 = 1/4.

Note that the squeezed state |β;µ, ν〉 with µ, ν > 0 has 〈∆â21〉 = (µ − ν)2/4 <
1/4, and so the density operator ρ̂ = |β;µ, ν〉〈β;µ, ν| for µ, ν > 0 does not have
a proper P -representation.
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