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Problem 5.1
Here we shall derive the signal-to-noise ratio (SNR) optimality of squeezed states for
quadarature measurements.

(a)

We know that @ = a; + jag, with a; and a; Hermitian, and that [aq, as] = j/2.
Thus we have that,
(a'a) = (a1 — jas)(ar + jas)).
Multiplying out and using the commutator we get,
(a'a) = (a7) + (a3) —1/2

Because mean-squared values equal variances plus squared-mean values we then
have,
(a'a) = (AaT) + (@) + (Aa3) + (a2)* — 1/2.

Rearranging terms, and using the average photon number constraint, we find
that,
N +1/2 — (Aa3) — (as)”

(Aaf)
with equality if and only if (a'a) = N. By making (afa) = N and (ay) = 0, we
can increase the SNR to,

SNR < -1,

A2
SNR — N + 1/2A2 (Aas) 1
(Aat)

For fixed N and (Aa?), the SNR expression we have just derived is maximized

by a minimum uncertainty state, i.e., one which satisfies (Aa?)(Aa3) = 1/16,

in which case

N +1/2 |
(Aap)  (4(Aar))”

Defining z = (Aa?), we can differentiate the preceding SNR expression to ob-

tain,

SNR = - 1.

dSNR N+1/2 1
de 2z * 82
which has a unique root at x = 1/8(N + 1/2). Differentiating a second time
gives,
d’SNR 2(N+1/2) 3
dz? 7’ 8z’
which equals —83(N + 1/2)* < 0 at z = 1/8(N + 1/2), so that the stationary
point we have found is a maximum. The resulting optimal SNR value is then
found, by substitution, to be SNR = 4N(N + 1).
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(c) For the squeezed state |5; i, V), we know that

(1) = Re(u'—vp"),

2
X —v
@apy = 1o
(@la) = |uB—vB P+
Substituting in 8 = \/N(N +1), p = (N+1)/v2N + 1, and v = N/v/2N + 1,

we get

(a;) = /N(N+1)/2N +1),
(Aa3) = 1/4(2N +1),
(a'a) = N(N+1)/(2N +1)+ N?/(2N +1) = N.

This state therefore has N photons on average, and its quadrature-measurement
SNR equals the optimal value 4N (N + 1).

(d) For the coherent state |v/N) we have,
(@) = Re(vVN)=VN,
(Aaf) = 1/4,
(a'a) = N.
This state therefore has N photons on average, and its quadrature-measurement

SNR equals 4N. The optimal squeezed state has a larger quadrature-measurement
SNR by a factor of N 4 1; for N > 1, this is an enormous SNR advantage.

Problem 5.2
Here we shall introduce the notion of normally-ordered forms.

(a) This is a straightforward exercise. We have that

A

F

~

aa'a = (a'a + [a,a']) a = a'a® + a,

and )
F=aa'a=a(aa’ — [a,a'])

Il
Q>

whence



and

Because F' = F™(al &) we have that,
(a|Fla) = (a|F™(@F a)a) = (a]ata® + ala)
= a*a’+a,
where the last equality follows from (repeated) use of the eigen relations,

ala) = ala) and (ala’ = (a]a*.
Using the coherent-state identity resolution twice, we get

A A A A 2 2 A~
G-ici- [[22F B 1alé1y 18,

T
We know that F' = F(™(af, ), thus

(a|F|8) = (a| F™ (!, a)|8) = (ala'a® + a|) = (a8 + B)(alB).

Using F™(a*, a) = a*a? + a, from (a), with o* and « treated as independent
variables we now get,

(a|F|B) = F™(a*, B)(a|B) = F™(a*, B)e el HB)/2+a™s

where the last result uses the coherent-state inner product that we have derived
in a previous problem set.

The density operator is an Hermitian operator whose eigenvalues form a proba-
bility distribution. Moreover, (1|p[1)), for any unit-length ket |¢/), is the proba-
bility that the oscillator will be found in state |¢)). Because the coherent states
are normalized to unit length, we have that («|p|a) > 0. Because the coherent
states resolve the identity and the trace of an operator can be computed by
summing its matrix elements in this overcomplete basis, we have that,

2
52 alpla) = u(p) = 1
where the last equality was proven on a previous problem set. It follows that
plar,as) = p™(a*, a)/7 = (alp|a)/T is a proper joint probability density
for two real-valued random variables. We shall see in class that this density
characterizes the measurement statistics of heterodyne detection, viz., a joint
measurement of both quadratures of the oscillator.



Problem 5.3
Here we will introduce the three most important characteristic functions for quantum
statistical analyses.

(a) We have that [a,a'] = 1, so that [—(*a, (a'] = —|¢|*. It follows that,
(", [(*a, Cal]] = [¢a, [~C"a, CaT]] = 0,
and hence (from the identities given in the problem statement),
pCraGal _ —Cragcat JCP/2 _ Gaf —¢ra—I?/2

Multiplying these equalities by p and taking the trace we obtain the relations
we were seeking:

X}I.;V(C*?C) = Xﬁ;((*, C)G'C‘Qm = X?V(C*u g)e—\CP/?‘

It is now easy to use these relations to find all three characteristic functions for
the coherent-state density operator, p = |a)(a|. We start with the normally-
ordered characteristic function,

Xn(CH Q) = tr(f)ewe‘c*&> = tr(|a)<a|e<dfe—4*@>
= (o] e¢"q) = eoT ¢,
We then immediately obtain,

* * —_ 2 a*_ *a_ 2
X (C*,€) = x5 (¢F, C)e ISP /2 = glor—Craic?/2,

and 2 2
XA (CF,C) = X0 (C*, C)e P2 = glor—Camic?.

(b) We have that,
0 = (e )

i= [T el

(e

Introducing,



in between the exponentials in the x*; definition yields,

Xalene) = /CFTatr(ﬁecﬂaﬂale@T)

2
— /d_o‘ tr(pla) (e ¢ o+

/0

d2 * *
~ [ falager<reree

™

e2iCza1—2jCraz
= //da1 day p™ (0¥, 0) ———

T

Flp™(a*, )]

™

fi=—C/n ’
fo=C/m

where F[xz(t1,t2)] denotes the 2-D Fourier transform,

X(fi, fo) = Fla(ty, t2)] = //dh dto 1 (ty, ty)e~I2r(Nt1+fat2),

For future use, we note that the standard 2-D inverse Fourier transform,

z(ty,ta) = FUX(f1, f2)] = //df1 dfs X (fi1, fo)e?2mititfat2),

can be used to show that

P (e, a) = //dC1 dGa X5(¢", €)

—2jC2a1+25C1a2
T

All we need to do is to show that we can recover the diagonal elements in the
coherent-state representation from

5 d2C * —¢at _¢*a

p= 7XZ(C S Qe et

This calculation is simple:

d? At g
(@lple) = 2 O ale )
d? .y o
=[S
m

€—2j42a1+2j41042
= //dC1 dG x5 (¢", ¢)————,

™

which equals p™(a*, @), as was to be shown, from the result of (b).
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(d) If p has a proper P-representation, then

Xn (¢ €) tr (ﬁeCdTe—C*d>

- /dQQP(a,a*)tr<|a)(a|e<&Te_C*d>
= /dQQP(a,a*)eCO‘*_C*O‘

= /dZOé P(a) Oé*)e2j€2a172jcla2’

again a 2-D Fourier transform relationship. Keeping track of the normalization
constant (factors of 7 in each Fourier dimension), we have that the inverse
Fourier relationship is

d? “yo
Placa’) = [ 3 aa(cr e,

(e) This part is trivial. We are told that the characteristic function for the classical
outcome of the dy measurement is

Moy () = (™)
Substituting in the definition a, = [ae™? + afe’?]/2, we see that

My, (jv) = tr (ﬁe*(*j”‘f_jg/m&*(j”ejg/mm) = \§y (—jve % /2, juel /2).

Problem 5.4
Here we shall that it is easy to calculate number-operator and quadrature-operator
measurement statistics when the oscillator has a proper P-representation

(a) Suppose that the quantum harmonic oscillator is in the coherent state |«) with
classical probability density p(aq, ag). If O is any observable, then the condi-
tional probability that the outcome of this measurement will be the eigenvalue
o, given that the oscillator is in the state |a), is |[(o|a)|?. (Without appre-
ciable loss of generality, we have assumed that the eigenspace associated with
the eigenvalue o is one-dimensional, and spanned by the unit-length eigenkets
{|o)}.) The unconditional probability that we get outcome o is therefore,

[ [das dasplas,anliolal = (o ( / anp<a1,a2>|a><a|) o).



But we know that the unconditional probability for the O measurement to yield
outcome o is given by, (o|p|o), where p is the oscillator’s density operator. It
follows, because |0) can be an arbitrary unit-length ket, that

b= / o plor, an)|a)al,

specifies the density operator in terms of the classical probability density for
the state to be |a). We are given that the density operator has a proper P-
representation, i.e.,

p= [@aPla.a)a)al
so it is clear that p(aq,as) = P(a, a*) is the probability density that the state
is |a).

When we are in the coherent state |«) the N-measurement has Poisson statistics,

Me_lap

, forn=0,1,2,...
n!

Pr( N outcome = n | state is |a)) =

Averaging over the proper P-representation—which specifies the probability
density that the state will be |a)—then gives us the unconditional probability
distribution:

2n
Pr(N outcome =n) = /an P(a, a*)%e‘ap, forn=20,1,2,...
n!

Because the variance of the N measurement equals the mean of the conditional
variance plus the variance of the conditional mean, and the variance of the
conditional mean is non-negative, we have that

(AN?) > /dZaP(a,a*)var(N measurement | state is |a))

= /d2oc P(a, a)|al?,

where the last equality uses the fact that the conditional distribution for the
N-measurement is Poisson with mean (and hence variance) |o|?. By a similar
iterated expectation calculation we have that the mean of the N-measurement
equals the mean of its conditional mean, viz.,

(N) = /dza P(o, a*)E( N measurement | state is o)) = /d2a P(a, a)|al?,
completing the proof that states with proper P-representations satisfy,
(AN > ().

Note that the number state |n) has (N) = n and (AN?) = 0, and so the density
operator p = |n)(n| does not have a proper P-representation for n > 0.
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(¢) When we are in the coherent state |«), the probability density for the outcome
of the a; quadrature measurement is Gaussian with mean «; = Re(a) and
variance 1/4. Thus the unconditional density function for this measurement
outcome to be a;, when the density operator has a proper P-representation is,

>exp[—2(a1 — )]
/2 -

p(a; outcome = a;) = /d2a P(a,a”

Via the same iterated expectation approach used in (b), we know that the
variance of the a; measurement equals or exceeds the mean of the conditional
variance, i.e.,

(Aa?) > /d2a P(a, a™)var( a; measurement | state is |a))

= /anP(a,a*)l/éL =1/4.

Note that the squeezed state |3; u, v) with u,v > 0 has (Aa?) = (u — v)?/4 <
1/4, and so the density operator p = |3; u, v){(B; u, v| for p, v > 0 does not have
a proper P-representation.
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