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Problem 4.1
Here we shall show that the creation operator, â†, does not have any non-zero eigen-
kets. Suppose that

â†|β〉 = β|β〉, (1)

for β a complex number. Using the completeness of the number kets,

∞

Î =
∑
n=0

|n〉〈n|,

we have that
∞ ∞

|β〉 ˆ= I|β〉 = 〈n|β〉|n =
n=0

〉 bn
n=0

|n〉,

with the obvious definition of the {b

∑ ∑
n}. Substituting this expansion into Eq. (1) then

gives,
∞ ∞

â†|β〉 =
∑

bnâ
† n

n=0

〉 =
∑

bn
√

|
n=0

∑∞
n+ 1|n+ 1〉 = β|β〉 = βbn n . (2)

n=0

| 〉

Now, because |n〉 and |m〉 are orthogonal for n 6= m, it must be that the coefficients of
the same number ket on each side of Eq. (2) are equal. For n = 0 this gives 0 = βb0.
Unless β = 0—a case we will treat momentarily—it follows that b0 = 0. For n > 0,
equating the corresponding number-ket coefficients on both sides of Eq. (2) gives,

bn−1
√
n = βbn −→ bn =

b0
√
n!
,

βn

assuming β 6= 0. But, if β 6= 0 we already know that b0 = 0. Thus, â† has no non-zero
eigenkets with non-zero eigenvalues.

Maybe there is a non-zero eigenket with zero eigenvalue? Suppose |β0〉 is such a
state, viz., |ψ0〉 ≡ â†|β0〉 = 0. Then the squared length of |ψ0〉 must be zero, i.e.,

0 = 〈ψ0|ψ0〉 = 〈β0|ââ†|β0〉 = 0 = 〈β0|â†â|β0〉+ 〈β0|β0〉 ≥ 〈β0|β0〉 ≥ 0,

where the last equality used [a,ˆ â†] = 1. This result shows that |β0〉 has zero length,
proving that â† has no non-zero eigenket with zero eigenvalue.

Problem 4.2
Here we shall work out some properties of the coherent states.
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(a) We showed in class that the coherent state,

∞

|α〉 ≡
∑ αn

n=0

√ exp(
n!

−|α|2/2)|n〉,

is an eigenket of the annihilation operator with eigenvalue α, viz., â|α〉 = α|α〉,
for any complex number α. This is a remarkable result, because â is not an
Hermitian operator, moreover its real and imaginary parts, â1 ≡ (â+ â†)/2 and
â2 ≡ (â − â†)/2j, don’t commute. Anyway, the result we are seeking in this
part of the problem is easy to get. We start out as follows:

n

〈α|β =

(∑∞ α∗〉
n=0

√
n!

exp(−|α|2/2)〈n|

)(
∞∑
m=0

βm√ exp(
m!

−|β|2/2)|m〉

)
∞

=
∑ ∞

n=0 m

∑ α∗n

=0

√
n!

exp(−|α|2/2)(〈n|m〉) β
m

√ exp(
m!

−|β|2/2)

=

(∑∞ (α∗β)n

n=0

β
n

)
exp[ (

!
− |α|2 + | |2)/2],

where we have used the orthonormality of the number kets to obtain the last
equality. Now, using the power series for the exponential function we get the
inner product we were seeking:

〈α|β〉 = exp[α∗β − (|α|2 + |β|2)/2].

We see from this result that the coherent states are normalized to unit length,
〈α|α〉 = 1, but they are not orthogonal, i.e., α 6= β does not imply 〈α|β〉 = 0.

(b) Any operator is characterized by its matrix elements in a complete orthonormal
basis. Using the number kets as that basis, we have that

α〈n
(∫

d2|
π
|α〉〈α|

)
|m〉 =

∫
d2α

(
π
〈n|α〉)(〈α|m〉)

=

∫
d2α

π

α∗nαm√ exp[
n!m!

−|α|2]

=

∫ ∞
dz z

0

∫ 2π dφ

0 π

zn+mej(m−n)φ√ exp(
n!m!

−z2),

where zejφ is the polar-coordinate form of α = α1 + jα2. The φ integral is easily
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shown to be zero for n 6= m, and when n = m we have that

〈n|
(∫

d2α

π
|α〉〈α|

)
|n〉 =

∫ ∞
0

dz
2z2n+1

n!
exp(−z2)

=

∫ ∞
0

dy
yn
e−y = 1,

n!

where the penultimate equality used the change of variables y ≡ z2, and the
final equality follows from the factorial integral given in Problem 1.5 (a). These
matrix elements coincide with those of the identity operator,

〈n|Î|m〉 = δnm,

thus we have that
αˆ =

∫
d2

I α
π
| 〉〈α|,

QED.

Comment: Because the coherent states are not an orthogonal set, but their
outer-product sum resolves the identity as just shown, they form an overcom-
plete set, cf. Problem 1.8. It follows that any state |ψ〉 has a coherent-state
expansion of the form,

α|ψ〉 Î|ψ〉 =

∫
d2

= ψ(α)
π

|α〉,

with ψ(α) ≡ 〈α|ψ〉.

(c) All of these results are easily obtained from the overcompleteness relation plus
the eigenvalue/eigenket property of the coherent states. We have that,

αˆâ âI =

∫
d2

=
π

(â|α〉)〈α|

=

∫
d2α

α
π
|α〉〈α|.

Similarly, we see that

â† ˆ= Iâ† =

∫
d2α

α
π
| 〉(〈α|â†)

=

∫
d2α

α∗
π

|α〉〈α|.
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Continuing in this manner, we next show that

ââ† ˆ= âIâ† =

∫
d2α

(â
π

|α〉)(〈α|â†)

=

∫
d2α

α
π
| |2|α〉〈α|.

For the final result, we use the previous work plus the commutator,
[

ˆa,ˆ â†
]

= I,
to show that

â†â = ââ† − Î

=

∫
d2α

(|α|2 − 1)|α
π

〉〈α|.

Problem 4.3
Here we will explore the phase behavior of the quantum harmonic oscillator whose

photon annihilation operator is â. The Susskind-Glogower phase operator êjφ associ-
ated with â is defined as follows

êjφ ≡ (ââ†)−1/2a.ˆ

(Note that the “widehat” symbol is used to indicate that this is not the exponentiation
ˆof j times an Hermitian operator φ.)

(a) To find the number-ket representation of êjφ, we make use of

∞

â =
∑√

n=1

n|n− 1〉〈n|,

and
∞

ââ† = (m+ 1)
m=0

|m〉〈m|.

Then, from the useful fact, we get

∑

ê
∞

jφ =
∑ ∞

(m+ 1)−1/2

m

|m〉〈m
=0

|
∑√

n=1

∑∞
n|n− 1〉〈n| =

n=1

|n− 1〉〈n|

where the second equality follows from

〈m|n− 1〉 =

{
1, for m = n− 1

0, otherwise.
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(b) To verify that
∞

|ejφ〉 ≡
∑

ejnφ

n=0

|n〉,

is an eigenket of êjφ, we use the result of (a) and find

êjφ|ejφ〉 =
m

∑∞ ∞

=1

|m− 1〉〈m|
∑

ejnφ

n=0

|n〉

∞

=
m

∑
ejmφ

=1

|m− 1〉

∞

= ejφ
∑

ejkφ|k〉〈k| = ejφ e
k=0

| jφ〉,

where the {|n〉}, {|m〉}, and {|k〉} are number kets, the second equality follows
from number-ket orthonormality, and the third equality follows from k ≡ m−1.

This result verifies that |ejφ〉 is an eigenket of ejφ whose associated eigenvalue

is ejφ. Note that e

̂
ĵφ is not Hermitian, so it is somewhat surprising that it has

eigenkets. Given that it does, however, it is not surprising that they turned out
to be complex valued.

(c) To show that { |ejφ〉 : −π ≤ φ ≤ π∫} resolves the identity, i.e., to prove that
π dφ

Î =
−π

e
2π
| jφ〉〈ejφ|,

it suffices to verify that

〈n|
(∫ π dφ

−π

)
1, n = m

|ejφ〉〈ejφ| | ˆm〉 = 〈n I
2

| m〉 =
π

|

{
0, n 6= m

Using the number-ket expansions for |ejφ〉 and 〈ejφ| we get

dφ
n|
(∫ π

〈
−π 2π

|ejφ〉〈ejφ|
)
|m〉 =

∫ π

−π

dφ 1
ej(n−m)φ =

2π

{
, n = m

0, n 6= m

as desired.

Because

Π̂(φ)
|ejφ〉〈ejφ|≡

2π
is a positive constant times a projector, it is both Hermitian and positive

ˆsemidefinite. Thus, because Π(φ) resolves the identity, it is a probability operator-
valued measurement (POVM). Indeed the outcome from measuring this POVM
is a 2π-rad phase observation, −π ≤ φ < π, on the quantum harmonic oscillator
whose annihilation operator is â.

5



Problem 4.4
Here we shall develop a little commutator calculus that will be needed in the next
problem.

(a) We start with[
â1, â

2
2

]
≡ â1â

2
2 − â22â1 = ([â1, â2] + â2â1) â

2
2 − â2â1,

and then employ the commutator [â1, â2] = j/2 to get[
â1, â

2
2

]
= (j/2 + â2â1) â2 − â22â1 = â2 (j/2 + â1â2 − â2â1)

= â2 (j/2 + [â1, â2]) = jâ2.

Now let us start with

and apply

[
â , âk+1

]
=
(
â âk+1 − âk+1â

)
= â , âk + âk k

1 2 1 2 1 2 2â1 â2 − â +1
2 1 2 â1,

the assumed commutator â , â

([
k = jk

]
âk 1

1 2 2
− /2 to

)
get[

â1, â
k+1
2

]
]

=
(
jkâk−

[
1

2 /2 + âk2â
k

1 â2 − â +1
2 â1

= jkâk2/2 + âk2 ([â1, â

)
2])

= jkâk2/2 + jâk2/2 = j(k + 1)âk2/2,

QED for the induction.

(b) It’s déjà vu all over again! We start with[
â2, â

2 2 2
1

]
≡ â2â1 − â1â2 = ([â2, â

2
1] + â1â2) â1 − â1â2,

and then employ the commutator [â2, â1] = −j/2 to get[
â 2
2, â1

]
= (−j/2 + â1â2) â

2
1 − â1â2 = â1 (−j/2 + â2â1 − â1â2)

= â1 (−j/2 + [â2, â1]) = −jâ1.

Now let us start with[
â , âk+1

1

]
=
(
â2â

k+1
2 1 − âk+1

1 â2
)

=
([
â2, â

k
]

+ âkâ2
)
â1 − âk+1â2,

and apply the assumed commutator
[
â2, â

k
1

â , âk+1 k 1
2 1 = −jkâ1− /2 +

] 1 1 1

= −jkâk 1/2 to get[ ] ( 1
−

âk1â
k

2 â1 − â +1
1 â2

= −jkâk1/2 + âk1 ([â2, â

)
1])

= −jkâk1/2− jâk1/2 = −j(k + 1)âk1/2,

QED for this induction.
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(c) These commutator calculations are straightforward. We have that

∞
ân

[â1, G(â2)] =

[
â1,
∑

2

n=0
n!

dnG(α2)

dαn2

∣∣∣∣
α2=0

]
∞

=
∑

[â1, â
n 1
2 ]

n=0
n!

dnG(α2)
,

dαn2

∣∣
α2=0

because we can interchange the order of the linear operations

∣∣
of summation and

commutator evaluation. Applying the result from (a) then gives us,

∞
1

[â1, G(â n 1
2)] =

∑
(jn/2)â2

−

n=0
n!

dnG(α2)

dαn2

∣∣∣∣
α2=0

d
= (j/2)

dâ2

(
∞∑
n=0

ân2
n!

dnG(α2)

dαn2

∣∣∣∣
α2=0

)
= (j/2)

dG(â2)
.

dâ2

The other commutator that we are seeking follows by the same procedure:

∞
ân

[â2, F (â1)] =

[
â2,
∑

1

n=0
n!

dnF (α1)

dαn1

∣∣∣∣
α1=0

]
∞

=
∑

[â2, â
n 1
1 ]

n=0
n!

dnF (α1)

dαn1

∣∣∣∣
α1=0

∞

= −
∑

(jn/2)ân−1
1

1

n=0
n!

dnF (α1)

dαn1

∣∣∣∣
α1=0

d
= −(j/2)

∑∞
dâ1

(
ân1

n=0
n!

dnF (α1)

dαn1

∣∣∣∣
α1=0

)
= −(j/2)

dF (â1)
.

dâ1

Problem 4.5
Here we shall show that the eigenkets of a quadrature operator can be found from a
translation operator applied to the zero-eigenvalue eigenket.

(a) We have that

ˆ ˆâ1A1( )|α1〉 ˆξ 1 = A1(ξ)â1|α1〉1 +
[
â1, A1(ξ)

]
|α1〉1

ˆdA )ˆ= A1(ξ)â1|α1〉 1(ξ
1 + (j/2) α

dâ2
| 1〉1,
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where the last equality follows from Problem 4.4(c). Now, because â1|α1〉1 =
α1|α1〉1 and

ˆdA1(ξ) ∑∞ (
=

−2jξ)n

dâ2 n=0
n!

dân2
dâ2

∞

=
∑ (−2jξ)n

n=1

ˆân−1
n− 1)! 2 = (−2jξ)A1(ξ),

(

we see that
ˆâ1A1(ξ)|α1〉 ˆ

1 = (α1 + ξ)A1(ξ)|α1〉1,
ˆi.e., A1(ξ)|α1〉1 is an eigenket of â1 with eigenvalue α1 + ξ.

ˆ ˆ(b) By definition, A1(α1) = exp(−2jα1â2). Therefore from (a) we have thatA1(α1)|0〉1
is an eigenket of â1 with eigenvalue α1 if |0〉1 is the â1 eigenket with eigenvalue
zero. The length of this ket satisfies,(

1〈0|Â†1(α1)
)(

ˆ ˆ ˆA1(α1)|0〉1
)

= 1〈0|A†1(α1)A1(α1)|0〉1.

ˆMoreover A† ˆ
1(α1) = A−11 (α1), as can be verified by a tedious power-series-

ˆexpansion proof that exp(2jα1â2) exp(−2jα1â2) = exp(2jα1â2 − 2jα1â2) = I.
Thus, we get the desired result:(

1〈0| ˆ† ˆA1(α1)
)(

A1(α1)|0〉1
)

= 1〈0|0〉1.

(c) This part is just a rehash of (a):

ˆâ2A2(ξ)| ˆ
2〉 ˆα 2 = A2(ξ)â2|α2〉2 +

[
â2, A2(ξ)

]
|α2〉2

ˆdA )ˆ 2(ξ
= A2(ξ)â2|α2〉2 − (j/2) 2

d
|α2

â1
〉

ˆ= A2(ξ)α2| ˆα2〉2 + ξA2(ξ)|α2〉2,

QED.

ˆ(d) This part is just a rehash of (b). By definition, A2(α2) = exp(2jα2â1). Therefore
ˆfrom (c) we have that A2(α2)|0〉2 is an eigenket of â2 with eigenvalue α2 if |0〉2

is the â2 eigenket with eigenvalue zero. The length of this ket satisfies,(
2〈 ˆ ˆ0|A†2(α2)

)(
A2(α2)|0〉2

)
= 2〈 ˆ0|A† ˆ

2(α2)A2(α2)|0〉2 = 2〈0|0〉2,

ˆbecause, A† ˆ
2(α ) = A−12 2 (α2).
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Problem 4.6
Here we shall continue our development of the quadrature-operator eigenkets.

(a) Suppose that the harmonic oscillator is in the â1 eigenket |α1〉1. The average
energy in this state satisfies,

1〈α1|Ĥ|α1〉1 = ~ω(1〈α1|â2|α 2
1 1〉1 + 1〈α1|â2|α1〉1)

≥ ~ω(1〈α1|∆â21|α1〉1 + 1〈α1|∆â22|α1〉1),

because mean-square values equal or exceed variances. The Heisenberg uncer-
tainty principle then yields,

1〈α1|Ĥ|α1〉1 ≥ ~ω( 2
1〈α1|∆â1|α1〉1 + 1/16 1〈α 2

1|∆â1|α1〉1) =∞,

where the last equality follows from the eigenket property,

âk1|α k
1〉1 = α1|α1〉1, for k = 1, 2, . . . ,

which implies
2

1〈α1|∆â1|α1〉1 = 0.

Similarly, if the harmonic oscillator is in the â2 eigenket |α2〉2, we have that,

2〈α2|Ĥ|α2〉2 = ~ω(2〈α 2
2|â1|α2〉2 + 2〈α2|â22|α2〉2)

≥ ~ω(2〈α2|∆â21|α 2
2〉2 + 2〈α2|∆â2|α2〉2)

≥ ~ω(1/16 2〈α2|∆â22|α2〉2 + 2〈α 2
2|∆â2|α2〉2) =∞.

〈 ˆ 〉 〈 | ˆThe preceding proofs were fairly straightforward, because we used H = ψ H|ψ〉
to calculate average energy of a state |ψ〉, rather than introducing the proba-
bility density functions for the â1 and â2 measurements, then calculate the

ˆmean-squared values of these quadrature measurements, and finally use 〈H〉 =
~ω (〈∆â21〉+ 〈∆â22〉) . The problem with this latter (longer) approach arises here
because we are dealing with the â1 and â2 eigenkets, which have infinite length.
Thus the measurement statistics for these states, |α1〉1 and |α2〉2, have to be
handled somewhat differently than is the case for unit-length kets. In partic-
ular, if we measure the quantum harmonic oscillator’s â1 quadrature operator
when the oscillator is in a (unit-length, i.e., finite energy) state |ψ〉, then the
classical probability density for the measurement outcome to be α1 is,

p(α1) = |1〈α1|ψ〉|2, for −∞ < α1 <∞.
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This equation is consistent with standard probability theory because the mag-
nitude squared on the right ensures that p(α1) ≥ 0 for all α1, and∫ ∞

dα1 p(α1) = 〈ψ|
(∫ ∞

dα1 |α1〉11〈α1| |
−∞

)
|ψ〉 = 〈 ˆψ I|ψ〉

−∞

= 〈ψ|ψ〉 = 1,

where the second equality uses the completeness relation for the {|α1〉1}, and
the last equality uses the fact that |ψ〉 has unit length. The nth moment of the
measurement outcome therefore satisfies,∫ ∞

dα1 α
n
1p(α1) = 〈ψ|

(∫ ∞
dα1 α

n
1 |α1〉1 ˆn1〈α1| |ψ〉 = 〈ψ|a1 |ψ〉.

−∞ −∞

)
However, if the oscillator is in the (infinite-length, hence infinite-energy) state
|ψ〉 = |α1

′ 〉1, then

p(α1) = |1〈α1|ψ〉|2 = |δ(α1 − α1
′ )|2, for −∞ < α1 <∞,

which is not an acceptable probability density for a classical random variable
(â1-measurement outcome) α1. Because of the eigenket property of |α1〉, we
have that,

(â1 − α1)|α1〉1 = (α1 − α1)|α1〉1 = 0,

so that with 〈â1〉 = α1 and with ∆â1 ≡ â1 − 〈â1〉 we find that,

(∆â1)
2|α1〉1 = 0,

which implies that the ∆â1 measurement has outcome zero with probability
one, in keeping with what we expect from measuring an observable when the
quantum system’s state is an eigenket of that observable.

ˆ(b) From Problem 4.5 we know that |α1〉1 = A1(α1)|0〉1. Thus,

2〈α2| ˆα1〉1 = 2〈α2|A1(α1)|0〉1.

ˆUsing the power series for A1(α1), we see that

∞
( n

2〈α2|Â1(α ) =
∑ −2jα1)

1

n=0

n
2

n!
〈α2|â2

∞

=
∑ (−2jα1α2)

n

n=0

2
n!

〈α2| = exp(−2jα1α2)2〈α2|,
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so that we get

2〈α2|α1〉1 = exp(−2jα1α2)2〈α2|0〉1.

Now, from Problem 4.5 we have that

2〈α2| = 2〈 ˆ0|A†2(α2),

whence

2〈 ˆα2|α1〉1 = exp(−2jα1α2)2〈0|A†2(α2)|0〉1.

To complete our derivation, we note that

∞ n

Â†2(α2)|0〉1 =
∑ (−2jα2)

n=0

ân
n! 1 |0〉1 = |0〉1,

and so obtain the desired result, 2〈α2|α1〉1 = exp(−2jα1α2)2〈0|0〉1.

(d) Start from the orthonormality relation,

2〈α2
′ |α2〉2 = δ(α2 − α2

′ ),

and evaluate the left-hand side via the completeness relation for the {|α1〉1},
i.e.,

∞

2〈α2
′ | ˆα2〉2 = 2〈α2

′ |I|α2〉2 = 2〈α2
′ |
(∫

dα1 |α1〉11〈α1|
)
|α2〉2.

−∞

Using the result of (b) we then have that,

∞

2〈α2
′ |α2〉2 =

∫
dα1 2〈α2

′ |α1〉11〈α1|α2〉2
−∞

= | 〈0|0〉 |2
∞

2 1

∫
dα 2

1 exp[−2j(α2
′ − α2)α1] = |2〈0|0〉1| πδ(α2 − α2

′ ).
−∞

With the assumption that 2〈0|0〉1 is positive real, we get

1
2〈0|0〉1 = √ .

π

The final result is then

exp(
2〈α2|α1〉1 =

−2jα1α2)√ .
π
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