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• Section 2.2 of M. A. Nielsen and I. L. Chuang, Quantum Computation and
Quantum Information

• Sections 1.1–1.16 of W.H. Louisell, Quantum Statistical Properties of Radiation.

Problem 2.1
Here we shall explore the use of wave plates to perform polarization transformations
on a single photon. The polarization state of a +z-propagating, frequency-ω photon
at z = 0 is characterized by a complex-valued unit vector,

α
i ≡

[
x

αy

]
, (1)

such that Re[ie−jωt] describes the time evolution of the photon at z = 0 where

i†i = |αx|2 + |αy|2 = 1,

with
i† ≡

[
αx
∗ αy

∗ ] ,
being the unit-length condition for i.

(a) For our monochromatic photon, propagation through Lm of material in which
light of arbitrary polarization propagates at velocity c/n, where c is light speed
in vacuum and n is the material’s refractive index at frequency ω, leads to a
phase delay φ = ωnL/c. Thus the time evolution of the photon at z = L is
given by Re[ie−jω(t−nL/c)] = Re[i′e−jωt], where i′ ≡ iejφ.

Show that the polarization state i′ is identical to the polarization state i, i.e.,
the contour traced out by Re[ie−jωt] in the x-y plane is identical to that traced
out by Re[i′e−jωt].

(b) Wave plates are made of birefringent materials, i.e., materials which have differ-
ent velocities of propagation for light polarized along their principal axes. When
these axes are aligned with x and y, respectively, propagation of a monochro-
matic photon—whose polarization at z = 0 is given by Eq. (1)—results in a
new polarization at z = L,

i′ =

[
αxe

jφx

αye
jφy

]
, (2)
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where φx ≡ ωnxL/c and φy ≡ ωnyL/c give the respective phase shifts in terms
of the propagation velocities c/nx and c/ny along the x and the y axes. A
quarter-wave plate (QWP) is one for which φx − φy = π/2. Suppose that a
photon of +45◦ linear polarization,

i =

[
1/
√

2

1/
√

2

]
is the input to a QWP whose principal axes are aligned with x and y, respec-
tively.

Show that the output of this QWP is circularly polarized.

Suppose that this circularly polarized output is the input to another QWP
whose principal axes are aligned with x and y, respectively. What is the result-
ing polarization of the output from this QWP?

(c) A half-wave plate (HWP) is one for which the phase difference between propa-
gation along its principal axes is π rad. Suppose that a photon of polarization

i =

[
1
0

]
is the input to an HWP whose “fast” (low refractive index) axis is parallel to
the unit vector

~i ~ ~
fast = ix cos(θ) + iy sin(θ),

and whose “slow” (high refractive index) axis is parallel to the unit vector

~islow = −~ix sin(θ) +~iy cos(θ).

What is the polarization state at the output of the HWP?

(d) Suppose we wish to transform an x-polarized input photon,

iin =

[
1
0

]
into an output photon of polarization state,

iout =

[
αx
αy

]
Show that this can be done by first using a half-wave plate to transform iin to

α
i x
HWP =

[
| |
|αy|

]
,

and then using another wave plate, whose principal axes are aligned with x
and y respectively, and whose propagation phase difference φx − φy is chosen
appropriately, to transform iHWP into iout.
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(e) The polarization transformation scheme you verified in (d) is not a convenient
experimental approach, because it requires a phase plate with a controllable
propagation phase difference φx−φy. Here we consider an alternative approach
that only needs a QWP and an HWP. Suppose that we wish to transform an
arbitrary given input polarization

α
i x
in =

[
αy

]
,

which is not linear, into horizontal polarization

iout =

[
1
]
.

0

Because iin is, in general, an elliptical polarization, there must be a Cartesian
coordinate system, (x′, y′), in which this input polarization takes the form

iin =

[
αx
′

αy
′

]
,

with αy
′ = jkαx

′ , for k a positive constant. Use this fact to argue that a QWP,
with its fast axis aligned in the y′ direction, will convert iin into linear polariza-
tion, after which an HWP can be used to obtain an iout that is linearly polarized
in the x direction. Using these results, explain how propagation through an
HWP and a QWP can be used to transform an initially x-polarized photon into
any desired polarization state.

Problem 2.2
Here we shall study the Poincaré sphere, viz., a 3-D real representation for the 2-D
polarization state

i =

[
αx
αy

]
,

of a +z-propagating, frequency-ω photon. Define a real-valued 3-vector, r as follows,

r ≡


r 1 2Re[αx

∗αy]
r2 = 2Im[αx

∗αy] .
r 2 2
3

 
|αx| − |αy


|

(a) Show that knowledge of r is


equiv


alent to knowledge


of i, i.e., r completely

describes photon’s polarization.

(b) Show that i†i = 1 implies that rT r ≡ r21 + r22 + r23 = 1, i.e., the photon’s
polarization-state lies on the unit-sphere (called the Poincaré sphere) in r space.
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(c) Where do x and y polarizations appear on the Poincaré sphere? Where do left
and right circular polarizations appear on this sphere?

(d) Let [ ] 
r1
 

2Re[αx
∗α

α
i ≡ x and r ≡  r2  =  y]

2Im[αx
∗α ]

α y
y r3 |αx|2 − |αy|2



be equivalent representations of the polarization state of a mono


chromatic pho-

ton, and let

i′ ≡
[ ′∗
αx
′ ] r1

′ 2Re[αx αy
′ ]

and r′ ≡

 r2
′


=

  2Im[α′∗ ]
y
′ x αy

′
α

r3
′ |αx′ |2 − |αy′ |2



be another pair of equivalent polarizations. Show that



r|i′†i|2 1 + r′T
= .

2

Problem 2.3
ˆLet A be a linear operator that maps kets in the Hilbert space H into other kets in

this space, i.e., for every |x〉 ∈ H, there is a |y〉 ∈ H that satisfies |y〉 ˆ= A|x〉. Let
{ |φn〉 : n = 1, 2, . . . , } be an arbitrary complete orthonormal (CON) set of kets in H,
i.e.,

1, for n = m,
〈φn|φm〉 = δnm ≡

{
0, for n 6= m.

∞

Î =
∑
n=1

|φn〉〈φn|,

ˆwhere I is the identity operator on H.

ˆ(a) Show that the operator A is completely characterized by its {φn} matrix ele-
ments, viz., { 〈φm|Â|φn〉 : 1 ≤ n,m ≤ ∞}, by proving that

∞

Â =
m

∑ ∞

=1

∑
n=1

〈φm|Â|φn〉|φm〉〈φn|

(b) Let |x〉 ˆ=
∑∞

n=1 xn|φn〉 be an arbitrary ket in H and let |y〉 = A|x〉. Show that

∞

|y〉 =
∑ ∞

ym| ˆφm〉 with ym =
=1

∑
n=1

〈φm
m

|A|φn〉xn, for 1 ≤ n,m <∞.
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ˆ(c) Specialize your results from (a) and (b) to the case in which A is an observable,
and the {φn} are its CON eigenkets.

Problem 2.4
Consider a quantum system, S ˆ, in the Schrödinger picture, with Hamiltonian H.

ˆSuppose that H has distinct, real-valued, non-negative, discrete eigenvalues {hn :
n = 0, 1, 2, . . . , } and associated orthonormal eigenkets, { |hn〉 : n = 0, 1, 2, . . . , }.

(a) Show that the time-evolution operator obeys

∞

Û(t, t0) =
∑

exp[−jhn(t− t0)/~] h
n=0

| n〉〈hn|, for t ≥ t0.

(b) Show that [
ˆ ˆ ˆ ˆU(t, t0), H

]
=
[
U †(t, t0), H = 0,

i.e., the time-evolution operator and its adjoint both

]
commute with the Hamil-

tonian.

(c) Suppose that the system is in the state |ψ(t0)〉 = |h1〉 at time t = t0. Find the
state of the system |ψ(t)〉 at an arbitrary later time t.

(d) Suppose that |ψ(t)〉 is as found in (c), and that we measure the observable

∞

Ô =
∑

ok o
=1

|ok
k

〉〈 k|

ˆat time t. Find Pr(O-measurement outcome = ok) for k = 1, 2, 3, . . . Use this
ˆresult to explain why the eigenkets of H are called stationary states.

Problem 2.5
Here we shall derive the time-frequency uncertainty principle of classical signal anal-
ysis. Essentially the same derivation can lead to the Heisenberg uncertainty principle
for position and momentum by means of wave function (rather than Dirac-notation)
quantum mechanics. Let x(t) be a complex-valued, square-integrable time function
whose Fourier transform is

X(f) ≡
∫ ∞

dt x(t)e−j2πft.
−∞

Define a normalized intensity for x(t) via,

2

p(t)
|x(t)|≡ ∫ ,∞
dt |x(t)|2

−∞
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and a normalized intensity for X(f) via,

P (f)
|X(f)|2≡ ∫ .∞
df |X(f)|2

−∞

(a) Show that p(t) and P (f) can be thought of as probability density functions,
i.e., they are non-negative functions that integrate to one.

(b) Define the root-mean-square time duration for x(t) to be,

T ≡

√∫ ∞
dt t2p(t),

−∞

and the root-mean-square bandwidth of X(f) to be,

W ≡

√∫ ∞
df f 2P (f).

−∞

Show that
dx(t) ∞

= df j2πfX(f)ej2πft,
dt

∫
−∞

dx(t)
i.e., j2πfX(f) is the Fourier transform of . Then, use Parseval’s theorem

dt
and the Schwarz inequality and to prove that

1
TW ≥

2π

∣∣∣∣∫ ∞
−∞

dt tx∗(t)
dx(t)

dt

∣∣∣∣∫ .∞
dt |x(t)|2

−∞

(c) Use the result from (b) and the fact that |z| ≥ |Re(z)|, for any complex number
z, to show that,

1
TW ≥

2π

∣∣∣∣Re

(∫ ∞
−∞

dt tx∗(t)
dx(t)

dt

)∣∣∣∣∫ ∞
dt |x(t)|2

−∞

1
=

∞

4π

∣∣∫∣ d(∣ dt t
|x(t)|2)

−∞ dt

∣∣∣∣∫ 1
=∞

dt |x(t)|2
−∞

.
4π
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(d) Show that equality occurs in (b) if and only if x(t) = K exp(at2), where K and
a are complex-valued constants with Re(a) < 0. Assume that x(t) is of this
form and then show that equality occurs in (c) if and only if a is real. Verify
that

exp( / )
x(t

−t2 4t2
) = 0 ,

(2πt20)
1/4

has Fourier transform

X(f) = (8πt20)
1/4 exp(−4π2f 2t20),

and that this x(t) has T = t0 and this X(f) has W = 1/4πt0, thus giving
TW = 1/4π.

7



MIT OpenCourseWare
https://ocw.mit.edu

6.453 Quantum Optical Communication
Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu
https://ocw.mit.edu/terms



