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e Sections 1.1-1.16 of W.H. Louisell, Quantum Statistical Properties of Radiation.

Problem 2.1

Here we shall explore the use of wave plates to perform polarization transformations
on a single photon. The polarization state of a +z-propagating, frequency-w photon
at z = 0 is characterized by a complex-valued unit vector,

=[5 &

such that Relie™*!] describes the time evolution of the photon at z = 0 where
i'i = |ag | +]a,|? =1,

with

being the unit-length condition for i.

(a) For our monochromatic photon, propagation through L m of material in which
light of arbitrary polarization propagates at velocity ¢/n, where c is light speed
in vacuum and n is the material’s refractive index at frequency w, leads to a
phase delay ¢ = wnL/c. Thus the time evolution of the photon at z = L is
given by Rel[ie 7@(t=nL/)] = Re[i'e7**], where i’ = ie’?.
Show that the polarization state i’ is identical to the polarization state i, i.e.,

the contour traced out by Re[ie™“!] in the z-y plane is identical to that traced
out by Rel[i’'e™*f].

(b) Wave plates are made of birefringent materials, i.e., materials which have differ-
ent velocities of propagation for light polarized along their principal axes. When
these axes are aligned with z and vy, respectively, propagation of a monochro-
matic photon—whose polarization at z = 0 is given by Eq. (1)—results in a
new polarization at z = L, ’
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where ¢, = wn,L/c and ¢, = wn, L/c give the respective phase shifts in terms
of the propagation velocities ¢/n, and ¢/n, along the = and the y axes. A
quarter-wave plate (QWP) is one for which ¢, — ¢, = m/2. Suppose that a
photon of +45° linear polarization,

[y V2
S 1/V2
is the input to a QWP whose principal axes are aligned with z and y, respec-
tively.
Show that the output of this QWP is circularly polarized.
Suppose that this circularly polarized output is the input to another QWP

whose principal axes are aligned with x and y, respectively. What is the result-
ing polarization of the output from this QWP?

A half-wave plate (HWP) is one for which the phase difference between propa-
gation along its principal axes is wrad. Suppose that a photon of polarization

~[3]

is the input to an HWP whose “fast” (low refractive index) axis is parallel to
the unit vector

ifast = 1y COS(0) + 1, sin(6),
and whose “slow” (high refractive index) axis is parallel to the unit vector
Tdow = —iy sin(f) + Zy cos(f).
What is the polarization state at the output of the HWP?

Suppose we wish to transform an x-polarized input photon,

. 1
lin = I O
into an output photon of polarization state,
. [ oa
lout = I ay :|

Show that this can be done by first using a half-wave plate to transform i;, to

and then using another wave plate, whose principal axes are aligned with =
and y respectively, and whose propagation phase difference ¢, — ¢, is chosen
appropriately, to transform igwp into igy.



(e) The polarization transformation scheme you verified in (d) is not a convenient
experimental approach, because it requires a phase plate with a controllable
propagation phase difference ¢, — ¢,. Here we consider an alternative approach
that only needs a QWP and an HWP. Suppose that we wish to transform an
arbitrary given input polarization

. a$
lin:|:ay:|7

which is not linear, into horizontal polarization
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Because i, is, in general, an elliptical polarization, there must be a Cartesian
coordinate system, (z’,y), in which this input polarization takes the form

: { o
lin = / )
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with o = jka, for k a positive constant. Use this fact to argue that a QWP,
with its fast axis aligned in the 3’ direction, will convert i;, into linear polariza-
tion, after which an HWP can be used to obtain an iy, that is linearly polarized
in the x direction. Using these results, explain how propagation through an
HWP and a QWP can be used to transform an initially z-polarized photon into
any desired polarization state.

Problem 2.2
Here we shall study the Poincaré sphere, viz., a 3-D real representation for the 2-D
polarization state
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of a +z-propagating, frequency-w photon. Define a real-valued 3-vector, r as follows,

1 [ 2Re[a’a,]
r=|r | =| 2mlala,]
T3 L |04:c’2 - ‘O‘yP

(a) Show that knowledge of r is equivalent to knowledge of i, i.e., r completely
describes photon’s polarization.

(b) Show that i'i = 1 implies that r’r = r? + 72 + r2 = 1, i.e., the photon’s
polarization-state lies on the unit-sphere (called the Poincaré sphere) in r space.



(¢) Where do x and y polarizations appear on the Poincaré sphere? Where do left
and right circular polarizations appear on this sphere?

(d) Let
N 1 2Relo ]
i= [ Oj”’ } and r= |7 | = | 2Imlalo,]
! r3 oz |* = Jay [

be equivalent representations of the polarization state of a monochromatic pho-
ton, and let
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be another pair of equivalent polarizations. Show that

T
i = L2
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Problem 2.3

Let A be a linear operator that maps kets in the Hilbert space H into other kets in
this space, i.e., for every |z) € H, there is a |y) € H that satisfies [y) = A|z). Let
{|¢n) :n=1,2,..., } be an arbitrary complete orthonormal (CON) set of kets in H,

ie.,
1, forn =m,
0, for n # m.
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where [ is the identity operator on .

(a) Show that the operator A is completely characterized by its {¢n} matrix ele-
ments, viz., { (¢m|A|¢n) : 1 <n,m < 0o}, by proving that

A= 33 (6l A1) 0} (4]

m=1n=1

(b) Let |) = 32°°, 2,|¢n) be an arbitrary ket in # and let |y) = Alz). Show that

= Z Ym|Om) with  y, = Z<¢m|fl\¢n>xn, for 1 <n,m < oco.
m=1 n=1



(¢) Specialize your results from (a) and (b) to the case in which A is an observable,
and the {¢,} are its CON eigenkets.

Problem 2.4

Consider a quantum system, S, in the Schrédinger picture, with Hamiltonian H.
Suppose that H has distinct, real-valued, non-negative, discrete eigenvalues { h,, :
n=0,1,2,..., } and associated orthonormal eigenkets, { |h,) :n =0,1,2,..., }.

(a) Show that the time-evolution operator obeys

Ult,to) =Y exp[—jhn(t — to) /Bl hn) (hn|, for t > to.
n=0
(b) Show that
[U(t,to),lfl} = [UT(t,tO),H] =0,
i.e., the time-evolution operator and its adjoint both commute with the Hamil-
tonian.

(c) Suppose that the system is in the state |1 (tg)) = |h1) at time ¢t = to. Find the
state of the system [¢(t)) at an arbitrary later time ¢.

(d) Suppose that |1(t)) is as found in (c), and that we measure the observable
O =" oklox) (o]
k=1

at time t. Find Pr(O-measurement outcome = o) for k = 1,2,3,... Use this
result to explain why the eigenkets of H are called stationary states.

Problem 2.5

Here we shall derive the time-frequency uncertainty principle of classical signal anal-
ysis. Essentially the same derivation can lead to the Heisenberg uncertainty principle
for position and momentum by means of wave function (rather than Dirac-notation)
quantum mechanics. Let z(t) be a complex-valued, square-integrable time function
whose Fourier transform is

X(f) = /_Oodt:v(t)e_jgﬂft.

[e.e]

Define a normalized intensity for z(t) via,
2 (t)[?

p(t) = —2 O
/_ dat [x(1)]?



and a normalized intensity for X (f) via,

pipy = B

e

(a) Show that p(t) and P(f) can be thought of as probability density functions,
i.e., they are non-negative functions that integrate to one.

(b) Define the root-mean-square time duration for z(t) to be,

T= / dt t?p(t),
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and the root-mean-square bandwidth of X (f) to be,

W= \/ / de 12P(f)

dl’(t) _ /OodijWfX(f)ej27rft,

i.e., j2r fX(f) is the Fourier transform of dzgft)
and the Schwarz inequality and to prove that
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(c) Use the result from (b) and the fact that |z| > |Re(2)|, for any complex number

z, to show that,
> dx(t
Re </ dttx*(t)%)‘
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Show that

. Then, use Parseval’s theorem

TW>—




(d) Show that equality occurs in (b) if and only if z(t) = K exp(at?), where K and
a are complex-valued constants with Re(a) < 0. Assume that x(t) is of this
form and then show that equality occurs in (c) if and only if @ is real. Verify
that

—12 /4¢3
() 2L
(2mt5) /
has Fourier transform

X(f) = (8mtg)"/* exp(—4n® f213),

and that this z(t) has T = ty and this X(f) has W = 1/4nt,, thus giving
TW = 1/4nr.
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