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Problem 1.1
Here we shall verify the elementary properties of the 1-D Gaussian probability density
function (pdf),

e−(X−m)2/2σ2

px(X) = √ , for
πσ2

−∞ < X <∞.
2

(a) For a 1-D deterministic function to be a pdf, it must be non-negative and
integrate to one. It is clear that e−(X−m)2/2σ2

is non-negative. To demonstrate
that it integrates to one—without recourse to integral tables—we proceed as
follows.(∫We have that

∞ 2

dX e−(X−m)2/2σ2

)
=

∫ ∞
dX

∫ ∞
dY e−(X−m)2/2σ2−(Y−m)2/2σ2

,
−∞ −∞ −∞

by writing out the square of the single integral as the product of single integrals
with different dummy variables of integration, and then combining the product
of these single integrals into a double integral. Converting the double integral
to polar coordinates, via X −m = R cos(Φ), Y −m = R sin(Φ) and dX dY =
RdRdΦ, yields,∫ ∞ π

dX

∫ ∞ 2

dY e−(X−m)2/2σ2−(Y−m)2/2σ2

=

∫ ∞
2 2

dΦ dR
0

∫
Re−R /2σ

−∞ −∞ 0

= 2π

∫ ∞
dRRe−R

2/2σ2

= 2πσ2,
0

where we have first done the Φ integral and then the R integral. Taking the
square root of this result then verifies the normalization constant for the 1-D
Gaussian pdf.

(b) We have that ∫ ∞ ejvXv
−(X 2

Mx(jv) = E(ej x
−m)2/2σ

) = dX
−∞

√
2πσ2∫ ∞ 2σ2

ejvm−v /2−[X−(m+jvσ2)]2/2σ2

= dX
−∞

√ 2

= ejvm−v σ2/2,
2πσ2

where we have used the fact∫ that
∞ e−(X−a)2/2σ2

dX
−∞

√ = 1,
2πσ2

is valid when σ2 > 0, even if a is complex valued.
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(c) To get the mean value of x we differentiate Mx(jv) once,

dMx(jv)
E(x) =

∣
2 2

=
[
(m+ jvσ2)ejvm−v σ /2

d(jv) v=jjv=j0

]∣
= m.

j 0

To get the mean-square value

∣∣∣
of x, we differentiate once more,

∣∣

d2 )
E(x2 Mx(jv

) =
d(jv)2

∣∣∣∣
jv=j0

=
{

2 2

[(m+ jvσ2)2 + σ2]ejvm−v σ /2
}∣

= m2 + σ2.
jv=j0

Now, using var(x) = E(x2)− [E(x)]2, we find that var(

∣∣
x) = σ2.

Problem 1.2
Here we shall verify the elementary properties of the Poisson probability mass function
(pmf),

mn

Px(n) = e−m, for n = 0, 1, 2, . . . , and m 0.
n!

≥

(a) A probability mass function must be non-negative and sum to one. The Poisson
pmf is clearly non-negative. To prove that it is properly normalized we use the
power series for ez to verify that,∑∞ ∞ n

Px(n = e−m

n=0

∑ m
)

n=0

= e−mem = 1.
n!

(b) The characteristic function associated with the Poisson pmf is found via a sim-
ilar power series calculation:

∞

Mx(jv) = E(ejvx) = e−m
∑ ejvnmn

n=0

= e−m exp(ejvm) = exp[m(ejv
n!

− 1)].

(c) We differentiate Mx(jv) once to get E(x):

dMx(jv)
E(x) = = = m.

d(jv)

∣∣∣ (∣ mejv exp[m(ejv − 1)]
)∣∣
jv=j0

jv=j0

We differentiate a second time to obtain E(x2):

E(x2 d2Mx(jv)
) = = (mejv +m2e2jv) exp[m(ejv 1)] = m+m2.

d(jv)2

∣ [∣∣∣ −
]∣∣
jv=j0

jv=j0

Now, using var(x) = E(x2)− [E(x)]2, we find that var(x) = m.
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Problem 1.3
Here we perform a simple 1-D random-variable transformation, using the method of
events.

(a) The probability distribution function of y = x2 is,

Fy(Y ) ≡ Pr(y ≤ Y ) = Pr(|x
√

| ≤ Y ) =

∫ √Y
0

dX
X 2

e /
2
−X 2σ2

σ

= 1− e−Y/2σ2

, for Y ≥ 0.

The pdf of y is obtained by differentiating its probability distribution function,

dFy(Y )
py(Y ) =

dY
=

 e−Y/2σ
2

,
2σ2 for Y ≥ 0,

0, otherwise,

i.e., y is exponentially distributed.

(b) The moment integrals for the exponential distribution are straightforward. The
factorial integral ∫ ∞

dZ Zne−Z = n!, for n = 0, 1, 2, . . . ,
0

plus the change of variables Z = Y/2σ2 yields:
∞

2

E(yn) = dY Y ne−Y/2σ /2σ2 = 2nσ2nn!.
0

Hence, we find E(y) = 2σ2,

∫
E(y2) = 8σ4, and var(y) = E(y2)− [E(y)]2 = 4σ4.

Problem 1.4
Here we perform a simple 2-D random variable transformation, using the method of
events.

(a) The joint pdf for r, φ can be found by differentiating the joint probability dis-
tribution function,

Fr,φ(R,Φ) ≡ Pr(r ≤ R, φ ≤ Φ),

for these random variables. This joint distribution function can, in turn, be
calculated from the joint pdf

Fr,φ(R,Φ) =

∫ ∫of x, y, as follows,

dX dY px,y(X, Y )
{ (X,Y ):r≤R,φ≤Φ }

=

∫ Φ

dθ

∫ R

ρ dρ px,y(ρ cos(θ), ρ sin(θ))
0 0

=

∫ Φ

dθ
0

∫ R 2

e−ρ
2/2σ

ρ dρ
0 2πσ2 =

Φ 2

(1
2π

− e−R /2σ2

),
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where we have converted to polar coordinates in order to do the integrations.
It is now easy to find the joint pdf of r, φ:

∂2Fr,φ(R,Φ)
pr,φ(R,Φ) =

R

=
∂R∂Φ

 e−R
2/2σ2

, for 0 R, 0 Φ < 2π,
2πσ2 ≤ ≤
0, otherwise.

(b) To find the marginal distributions we can integrate out the unwanted variable
from the joint distribution. This procedure yields,

2π R

pr(R) =

∫
dΦ pr,φ(R,Φ) =

0

 e
σ2

−R2/2σ2
, for 0 ≤ R,

0, otherwise,

and ∫  1∞
pφ(Φ) = dR pr,φ(R,Φ) =

0  , for 0 ππ ≤ Φ < 2 ,2

0, otherwise.

Because pr,φ(R,Φ) = pr(R)pφ(Φ), for all R,Φ, we see that the random variables
r and φ are statistically independent. Moreover, r is Rayleigh distributed and
φ is uniformly distributed.

Problem 1.5
Here we will learn about a pmf that will show up in our quantum optics work.

(a) The unconditional pmf of N is found by averaging its conditional pmf over the
statistics for x:

PN(n) =

∫ ∞
dX PN x(n x| | = X )px(X)

−∞

=

∫ ∞ Xn

dX
0 n!

e−X
e−X/m

m

1
=

∞

n!m

∫
dX Xne−X(m+1)/m

0

mn

=
∞

n!(m+ 1)n+1

∫
dZ Zne−Z

mn

=
0

,
( n for
m+ 1) +1 , n = 0, 1, 2 . . . ,

where we have used the change of variable Z = X(m+1)/m in the penultimate
equality. This pmf is called the Bose-Einstein distribution.
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(b) The characteristic function for the Bose-Einstein pmf is found as follows:

∑∞ mn

M j j
N( v) = e vn

n=0
(m+ 1)n+1

1
=

∑∞
m+ 1

n=0

(
mejv

m+ 1

)n
=

1

(m+ 1)[1−mejv/(m+ 1)]

1
= ,

1−m(ejv − 1)

where the penultimate equality is due to the geometric series formula,

∑∞
Zn 1

=
n=0

, for
1− Z |Z| < 1.

(c) Differentiating MN(jv) once yields,

dMN(jv)
E(N) =

me
=

d(jv)

∣∣∣∣
jv=j0

( jv

=
[1−m(ejv − 1)]2

)∣∣
m.

jv=j0

Differentiating a second time we obtain:

∣∣

E(N2 d2MN(jv)
) =

me
=

d(jv)2

∣∣∣∣
jv=j0

( jv

[1−m(ejv − 1)]2
+

2m2e2jv

[1−m(ejv − 1)]3

)∣∣
jv=j0

= m+ 2m2.

∣∣

Now, using var(N) = E(N2)− [E(N)]2, we find that var(x) = m+m2.

Problem 1.6
Here we will take a first step toward understanding jointly Gaussian random variables.

(a) The transformation

w = x cos(θ) + y sin(θ)

z = −x sin(θ) + y cos(θ),

is equivalent to the picture shown in Fig. 1. Clearly this is rotation by θ.

(b) Because the transformation is linear and x, y are jointly Gaussian, we know that
w, z are also going to be jointly Gaussian. Hence all we need to do is to find the
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z
y

w

x
θ

Figure 1: Transformation from (X, Y ) to (W,Z)

first and second moments of the new variables and substitute into the standard
2-D Gaussian pdf. We have that,

E(w) = E(x) cos(θ) + E(y) sin(θ) = 0

E(z) = −E(x) sin(θ) + E(y) cos(θ) = 0,

because of the linearity of expectation—the average of the sum is the sum of
the averages, the average of a constant times a random variable is the constant
times the average of the random variable—plus the fact that x and y are both
zero mean. So, because w and z are zero mean, their variances—like those for
the zero-mean random variables x and y—equal their respective mean-square
values. To find these mean-square values we square out the transformation that
defines w and z and average:

σ2
w = E(w2) = E(x2) cos2(θ) + 2E(xy) cos(θ) sin(θ) + E(y2) sin2(θ)

= σ2 cos2(θ) + 2ρσ2 cos(θ) sin(θ) + σ2 sin2(θ)

σ2
z = E(z2) = E(x2) sin2(θ)− 2E(xy) sin(θ) cos(θ) + E(y2) cos2(θ)

= σ2 sin2(θ)− 2ρσ2 sin(θ) cos(θ) + σ2 cos2(θ),

where we have used the zero-mean property to obtain E(xy) = cov(x, y). Now,
with standard trig identities, we can reduce these expressions to,

σ2 2
w = σ [1 + ρ sin(2θ)],

σ2
z = σ2[1− ρ sin(2θ)].
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To complete the information needed to pin down the joint pdf of w and z, we
must find their covariance. Because they are zero mean, this is found via,

λwz = E(wz)

= −E(x2) cos(θ) sin(θ) + E(xy)[cos2(θ)− sin2(θ)] + E(y2) sin(θ) cos(θ)

= ρσ2 cos(2θ).

The joint pdf for w and z can now be written down:[
σ2 2

exp zW
2 − 2λ− w WZ + σ2

z wZ

pw,z(W,Z) =
2(σ2

wσ
2
z − λ2

wz)

]
2π
√ ,
σ2
wσ

2
z − λ2

wz

where we have used the fact that w and z are zero mean, and the variances and
covariance are as derived above.

(c) To make w and z statistically independent, it is sufficent to make them uncor-
related, because they are jointly Gaussian. To be uncorrelated, in turn, means
we need to choose θ to make λwz = ρσ2 cos(2θ) = 0. We have restricted θ to
lie between 0 and π/2, hence the value we need is θ = π/4. With this choice,
we find that w and z are statistically independent, zero-mean Gaussian random
variables, with σ2

w = σ2(1 + ρ) and σ2
z = σ2(1 − ρ). Because |ρ| ≤ 1, both of

these variances will be non-negative.

Problem 1.7
Here we shall examine some of the eigenvalue/eigenvector properties of an Hermitian
matrix.

(a) We know that vector-matrix multiplication is associative, so y†(Ax) = (y†A)x.
We also know that the (A†y)† = y†A, and hence we see that B = A† is the
matrix that satisfies (By)†x = y†(Ax) for all x,y ∈ CN .

(b) From the eigenvalue/eigenvector property we have that

φ†nAφn = φ†n(Aφn) = µnφ
†
nφn = µn,

and, because A† = A, we also have that

φ†nAφn = (φ†nA)φn = µ∗nφ
†
nφn = µ∗n.

Equating these two results makes it clear that µn is real, for 1 ≤ n ≤ N .
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(c) Using the eigenvalue/eigenvector property we have that,

φ†mAφn = φ†m(Aφn) = µnφ
†
mφn.

Again using the fact that A is Hermitian—plus the result from (b), that the
{µn} are real—we have that,

φ†mAφn = (φ†mA)φn = µmφ
†
mφn.

Equating these two results makes it clear that if µm 6= µn, then φ†mφn = 0 must
prevail, i.e., the eigenvectors associated with distinct eigenvalues are orthogonal.

(d) If φ and φ′ are two linearly independent N -D vectors, then, via the Gram-
Schmidt process, we can find constants {a, b, c, d} such that

θ ≡ aφ + bφ′,

θ′ ≡ cφ + dφ′,

are non-zero, orthogonal vectors. It now follows that

Aθ = aAφ + bAφ′ = µ(aφ + bφ′) = µθ,

Aθ′ = cAφ + dAφ′ = µ(cφ + dφ′) = µθ′,

proving that these orthogonal vectors are also eigenvectors of A with the com-
mon eigenvalue µ.

(e) Assume that we have orthonormalized our eigenvectors, {φn : 1 ≤ n ≤ N }.
These eigenvectors form an orthonormal basis for CN . Any vector c ∈ CN can
then be written in the form,

N

c =
∑

φncn, where cn
n=1

≡ φ†nc.

If IN is the N ×N identity matrix, then c can also be written as,

c = INc.

Subtracting the former equation from the latter we get,(
N

IN −
∑

φ CNnφ
†
n

)
c = 0, for all c ∈ .

n=1

For this to be true it must be that,

N

IN =
∑

φnφ
†
n,

n=1
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Figure 2: Labeled sketch of {x1,x2,x3}.

as advertised. Because IN is the identity matrix, we now have that

N N

A = INA =
∑

φnφ
†
nA =

∑
µnφnφ

†
n,

n=1 n=1

where the last equality uses the facts that A is Hermitian and the {µn} are real.

Problem 1.8
Here we shall introduce the idea of overcompleteness, something that will be of great
importance in the quantum optics work to come.

(a) The vectors {x1,x2,x3} are sketched in Fig. 3.1. We see that they are unit-
length vectors, {xTi xi = 1 : i = 1, 2, 3 }, that are not orthogonal.

(b) With eT1 ≡ [ 1 0 ] and eT2 ≡ [ 0 1 ] being the standard orthonormal basis for
R2, we know that any y ∈ R2 can be written as

y1
y = y1e1 + y2e2 =

[
y2

]
.

Thus to prove that any y ∈ R2 can be expressed as a weighted sum of any
two of the {x1,x2,x3}, it is sufficient to show that e1 and e2 can be written as
weighted sums of any two of the {x1,x2,x3}. Figure 3.1 makes it clear that this
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is so, but let’s write out the formulas anyway:

2
e1 = √

3
[x1 + x2/2] =

1√ 2
[x1

3
− x3] = −√ [x2/2 + x3].

3

e2 = x2 = −(x1 + x3) = x2.

(c) This part is straight plug-and-chug. We have that,

√
x1x

T =

[
3/4

1

− 3/4

−
√

3/4 1/4

]

x2x
T
2 =

[
0 0

0 1

]

x3x
T
3 =

[
3/4

√
3/4

√ .
3/4 1/4

]

Summing these terms up yields,

∑3 3/2 0
x T
nxn =

n=1

[
0 3/2

]
.

Multiplying by 2/3 now yields the 2× 2 identity matrix, I2, as desired. Finally,
for any x ∈ R2 we have that

2
x = I2x =

∑3

3

(
xnx

T
n

n=1

)
2

x =
∑3

xn(xT
3 nx).
n=1
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