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Problem 1.1
Here we shall verify the elementary properties of the 1-D Gaussian probability density
function (pdf),

(a)

e—(X—m)2/202
Pe(X) = ————, for —oo < X < o0.

V2mo?

For a 1-D deterministic function to be a pdf, it must be non-negative and
integrate to one. It is clear that e~(X="™)°/20" ig non-negative. To demonstrate
that it integrates to one—without recourse to integral tables—we proceed as
follows. We have that

o} 2 00 0o
(/ dXe—(X—m)2/202) :/ dX/ dY6—(X—m)2/202—(Y—m)2/2cr2’

by writing out the square of the single integral as the product of single integrals
with different dummy variables of integration, and then combining the product
of these single integrals into a double integral. Converting the double integral
to polar coordinates, via X —m = Rcos(®), Y —m = Rsin(®) and dX dY =
RdR d®, yields,

oo 00 2m 00
/ dX / dY e (Xmm?2ei=(rmm)iaot - / o / dR Re~ /%"
—00 —00 0 0

= 27T/ dR Re F°/?7° = 2102,
0

where we have first done the ® integral and then the R integral. Taking the
square root of this result then verifies the normalization constant for the 1-D
Gaussian pdf.

We have that

dX
o0 V2mo?

/oo ejvm—v202/2—[X—(m+jv02)]2/202

' o0 eij—(X—m)2/2c72

dx — ejvmfv202/2’
00 V2mo?

where we have used the fact that

00 67()(7(1)2/202
) G
/oo V2mo?

is valid when o2 > 0, even if a is complex valued.
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(c) To get the mean value of x we differentiate M, (jv) once,

dM,(j , ,

E(x) = —Kjv) = [(m + ]va2)6]”m_v2"2/2} = m.
d(jv) jv=40 Jo=j0
To get the mean-square value of x, we differentiate once more,
d* M, (5
l;CrQ) d .({f)
(Jv) jv=30
— {[(m + jua?®)? + JZ]ej”m_”Q"Q/Z} =m?+ o
Ju=30

Now, using var(z) = E(z?) — [E(x)]?, we find that var(x) = o2.

Problem 1.2
Here we shall verify the elementary properties of the Poisson probability mass function

(pmf),

mn

P.(n) = —|6_m, forn=0,1,2,..., and m > 0.
n!
(a) A probability mass function must be non-negative and sum to one. The Poisson
pmf is clearly non-negative. To prove that it is properly normalized we use the

power series for e* to verify that,
00 0o m"
- m 0 _ -mom
ZPm(n)fe Zn!fe e =1.
n=0 n=0

(b) The characteristic function associated with the Poisson pmf is found via a sim-
ilar power series calculation:

, . " , ,
M,(jv) = E(e’"") =e™™ Z ¢ n:n = e Mexp(e’'m) = exp[m(e’’ — 1)].
n=0 ’

(c) We differentiate M, (jv) once to get E(x):

dM,(jv) » -
Ezr)= ————= = (me’’ explm(e’’ — 1)])|. . =m.
0= ", = (e el =),
We differentiate a second time to obtain E(z?):
d* M, (jv) , , :
2 z v 2 2jv v 2
E(z) = G0 e = [(me” + m*e¥") exp[m(e’” — 1)]] ‘jv:jO =m+m”.

Now, using var(x) = E(z?) — [E(2)]?, we find that var(z) = m.
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Problem 1.3
Here we perform a simple 1-D random-variable transformation, using the method of
events.
(a) The probability distribution function of y = 22 is,
\/? X X2 2 2
F,(Y) = Pr(y<Y)=Pr(z| <VY) :/ dX e X%
0 o
= 1- e_Y/Q"Q, for Y > 0.

The pdf of y is obtained by differentiating its probability distribution function,
—Y /202
e

p ()= ) e

ay 0, otherwise,

for Y >0,

i.e., y is exponentially distributed.

(b) The moment integrals for the exponential distribution are straightforward. The
factorial integral

/ dZ Z"e % =n!, forn=0,1,2,...,
0
plus the change of variables Z = Y/20? yields:

E") = / dY Y Y1?" )262 = 2752 ).
0

Hence, we find E(y) = 202, E(y*) = 80, and var(y) = E(y?) — [E(y)]? = 40*.

Problem 1.4
Here we perform a simple 2-D random variable transformation, using the method of
events.

(a) The joint pdf for r, ¢ can be found by differentiating the joint probability dis-
tribution function,

F.s(R,®)=Pr(r < R,¢p < D),

for these random variables. This joint distribution function can, in turn, be
calculated from the joint pdf of x,y, as follows,

Fou(R,®) — / / X dY pa,(X,Y)
{(X,)Y)r<R,p<®}

[ R
= / do / p dp pay(pcos(), psin(6))
0 0

@ R —p? /202
e (I) 2 2
— do d = —(1—e /%
/0 /0 pep 210 27r( ¢ )
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where we have converted to polar coordinates in order to do the integrations.
It is now easy to find the joint pdf of r, ¢:

Prs(R, @) O Frg(l, 0) 275776_1%2/202’ for 0 < R, 0<®<2m,
oL, P) = ————— =
RO 0, otherwise.

(b) To find the marginal distributions we can integrate out the unwanted variable
from the joint distribution. This procedure yields,

2m %G*RWQUQ, for 0 < R,
pl) = [Cawpra) = § o
0 0, otherwise,

and

1
o0 , for 0 < & < 27,
po(@®) = [ dRpoR2) = 2T
0 0, otherwise.

Because p, 4(R, ®) = p,(R)ps(P), for all R, &, we see that the random variables
r and ¢ are statistically independent. Moreover, r is Rayleigh distributed and
¢ is uniformly distributed.

Problem 1.5
Here we will learn about a pmf that will show up in our quantum optics work.

(a) The unconditional pmf of N is found by averaging its conditional pmf over the
statistics for x:

Py(n) = /_OOdX Pyig(n |z =X )p(X)

o0

00 X" —X/m
= / dX —e_Xe
0 n! m

_ b / " dX e Xom1/m
n!m J,

m” m"

= — | AZ7%e?=—"7""— forn=0,1,2,...,
n!(m+1)n+l/0 (m+1)n+1

where we have used the change of variable Z = X (m+1)/m in the penultimate
equality. This pmf is called the Bose-Einstein distribution.



(b) The characteristic function for the Bose-Einstein pmf is found as follows:

[e.e]

My (jv) = Z m+1n+1

=0

1 mel® \" 1
- m+1§JGH4):Tm+Uu—mwAm+m

1
1—m(e? —1)

where the penultimate equality is due to the geometric series formula,

> 1
Zzn:m, for |Z‘<1

(c) Differentiating My (jv) once yields,

oo ([1 - mT:j:— 1>]2)

Differentiating a second time we obtain:

dMN(]U)
d(jv)

E(N) =

=1m.

Jv=j0

dQM . Ju 2 2 2]1)
pav) - DU (e B )
d(jv) ju=70 [1—m(e?" —1)] [1—m(e” —1)] ju=30
= m+ 2m?.

Now, using var(N) = E(N?) — [E(N)]?, we find that var(z) = m + m?.

Problem 1.6
Here we will take a first step toward understanding jointly Gaussian random variables.
(a) The transformation
w = xcos(h)+ ysin(h)
z = —xsin(f) + ycos(),
is equivalent to the picture shown in Fig. 1. Clearly this is rotation by 6.

(b) Because the transformation is linear and z, y are jointly Gaussian, we know that
w, z are also going to be jointly Gaussian. Hence all we need to do is to find the



S

> T
Figure 1: Transformation from (X,Y") to (W, Z)

first and second moments of the new variables and substitute into the standard
2-D Gaussian pdf. We have that,

E(w) = E(x)cos(f)+ E(y)sin(d) =0
E(z) = —E(x)sin(f) + E(y)cos(f) =0,

because of the linearity of expectation—the average of the sum is the sum of
the averages, the average of a constant times a random variable is the constant
times the average of the random variable—plus the fact that x and y are both
zero mean. So, because w and z are zero mean, their variances—like those for
the zero-mean random variables x and y—equal their respective mean-square
values. To find these mean-square values we square out the transformation that
defines w and z and average:

02 = E(w?) = E(z?)cos®(0) + 2E(zy) cos(6) sin(0) + E(y?) sin®(6)
= 0% cos?(6) + 2po? cos(6) sin(h) 4 o2 sin’(6)

o2 = E(2%) = E(2*)sin*(0) — 2E(xy) sin(6) cos(0) + E(y?) cos(0)
= o%sin?(0) — 2po?sin(f) cos(0) + o2 cos?(6),

where we have used the zero-mean property to obtain F(zy) = cov(z,y). Now,
with standard trig identities, we can reduce these expressions to,

o2 = 0%l + psin(20)],

w

o2 = o*[1 — psin(20)].

z
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To complete the information needed to pin down the joint pdf of w and z, we
must find their covariance. Because they are zero mean, this is found via,

Aoz = E(wz)
= —E(2?)cos(#)sin(f) + E(xy)[cos®(0) — sin®*(0)] + E(y*) sin(6) cos(#)
= po?cos(26).
The joint pdf for w and z can now be written down:

o2W? =20\, . WZ + 02 Z*
2(0,07 — M)
2m\/0202 — N2 7

where we have used the fact that w and z are zero mean, and the variances and
covariance are as derived above.

exp|—

pw,z(Wv Z) -

(c) To make w and z statistically independent, it is sufficent to make them uncor-
related, because they are jointly Gaussian. To be uncorrelated, in turn, means
we need to choose 0 to make \,., = po?cos(20) = 0. We have restricted 6 to
lie between 0 and 7/2, hence the value we need is § = 7/4. With this choice,
we find that w and z are statistically independent, zero-mean Gaussian random
variables, with 02 = ¢%(1 + p) and 0% = 02(1 — p). Because |p| < 1, both of
these variances will be non-negative.

Problem 1.7
Here we shall examine some of the eigenvalue/eigenvector properties of an Hermitian
matrix.

(a) We know that vector-matrix multiplication is associative, so y'(Ax) = (y'A4)x.
We also know that the (Ay)T = yTA, and hence we see that B = AT is the
matrix that satisfies (By)'x = y'(Ax) for all x,y € CV.

(b) From the eigenvalue/eigenvector property we have that

¢l AP, = ¢l (AP,,) = 1@, = pin,

and, because AT = A, we also have that

dLAP, = (¢ A)p, = bl b, = 1.

Equating these two results makes it clear that pu, is real, for 1 <n < N.



(c)

Using the eigenvalue/eigenvector property we have that,

AP, = ¢l (Ad,) = 11, P, b,..

Again using the fact that A is Hermitian—plus the result from (b), that the
{pn} are real—we have that,

¢l AP, = (], A)p, = ], b,

Equating these two results makes it clear that if p,, # u,, then qbinqbn = 0 must
prevail, i.e., the eigenvectors associated with distinct eigenvalues are orthogonal.

If ¢ and ¢ are two linearly independent N-D vectors, then, via the Gram-
Schmidt process, we can find constants {a, b, ¢, d} such that

0 =ap+bd,
0 =co+dg,
are non-zero, orthogonal vectors. It now follows that
A0 = aA¢ +bAP = u(ag + be') = 10,
AO" = cA¢p+ dAP = u(ced + dd') = o',

proving that these orthogonal vectors are also eigenvectors of A with the com-
mon eigenvalue p.

Assume that we have orthonormalized our eigenvectors, {¢,, : 1 < n < N }.
These eigenvectors form an orthonormal basis for CV. Any vector ¢ € CVV can
then be written in the form,

N
c= E &,cn, Wwherec, = (;bilc.
n=1

If Iy is the N x N identity matrix, then ¢ can also be written as,
c = Iyc.

Subtracting the former equation from the latter we get,

N
([N - ¢n¢L> c=0, forallcecCV.
n=1

For this to be true it must be that,
N
Iy =) 0,9,
n=1
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Figure 2: Labeled sketch of {x;,x2,x3}.

as advertised. Because [y is the identity matrix, we now have that

N N
n=1 n=1
where the last equality uses the facts that A is Hermitian and the {u,} are real.

Problem 1.8
Here we shall introduce the idea of overcompleteness, something that will be of great
importance in the quantum optics work to come.

(a) The vectors {x1,X2,X3} are sketched in Fig. 3.1. We see that they are unit-
length vectors, {x/x; = 1:4=1,2,3}, that are not orthogonal.

(b) Withel =[1 0]andel =[0 1] being the standard orthonormal basis for
R?, we know that any y € R? can be written as

Y1
Yy = y1€1 + yaep = .
Y2

Thus to prove that any y € R? can be expressed as a weighted sum of any
two of the {xy,x3,x3}, it is sufficient to show that e; and e, can be written as
weighted sums of any two of the {x;, x5, x3}. Figure 3.1 makes it clear that this



is so, but let’s write out the formulas anyway:
2 1
e = %[Xl +X2/2] = %[Xl — Xg] = —E[XQ/Q ‘I‘Xg].

e = Xy =—(x1+X3)=Xs.

(c) This part is straight plug-and-chug. We have that,

. 3/4  —/3/4
R V. TR ]

o Joo
=T 1]

. 3/4 /3/4
S V-7V ]

Summing these terms up yields,
B 3/2 0
XpX, = .
1 0 3/2
Multiplying by 2/3 now yields the 2 x 2 identity matrix, I3, as desired. Finally,
for any x € R? we have that

3 3
2 2
x =DLx = 3 (ng xnxg) X =3 nE:l X, (x1x).

n—=
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