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Detection, and Communication,
For linear algebra review: Section 2.1 of M. A. Nielsen and I. L. Chuang, Quantum
Computation and Quantum Information.

Problem 1.1
Here we shall verify the elementary properties of the 1-D Gaussian probability density
function (pdf)

e−(X−m)2/2σ2

px(X) = √ , for X
πσ2

−∞ < <
2

∞.

(a) By converting from rectangular to polar coordinates, using X −m = R cos(Φ)
and Y −m = R sin(Φ), show that(∫ ∞ 2

dX e−(X−m)2/2σ2

)
=

∫ ∞
dX

∫ ∞
dY e−(X−m)2/2σ2−(Y−m)2/2σ2

= 2πσ2,
−∞ −∞ −∞

thus verifying the normalization constant for the Gaussian pdf.

(b) By completing the square in the exponent within the integrand,∫ ∞ ejvX−(X−m)2/2σ2

dX
−∞

√ ,
2πσ2

verify that
Mx(jv) = ejvm−v

2σ2/2,

is the characteristic function associated with the Gaussian pdf.

(c) Differentiate Mx(jv) to verify that E(x) = m; differentiate once more to verify
that var(x) = σ2.

Problem 1.2
Here we shall verify the elementary properties of the Poisson probability mass function
(pmf),

mn

Px(n) = e−m, for n = 0, 1, 2, . . . , and m
n!

≥ 0.
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(a) Use the power series
∞

ez =
∑ zn

n=0

,
n!

to verify that the Poisson pmf is properly normalized.

(b) Use the power series for ez to verify that

M j
x(jv) = exp[m(e v − 1)].

is the characteristic function associated with the Poisson pmf.

(c) Differentiate Mx(jv) to verify that E(x) = m; differentiate once more to verify
that var(x) = m.

Problem 1.3
Let x be a Rayleigh random variable, i.e., x has pdf

X

px(X) =

 e 2
2
−X2/ σ2 , for X ≥ 0

σ

0, otherwise,

and let y = x2.

(a) Find py(Y ), the pdf of y.

(b) Find my and σ2
y, the mean and variance of the random variable y.

Problem 1.4
Let x and y be statistically independent, identically distributed, zero-mean, variance
σ2, Gaussian random variables, i.e., the joint pdf for x and y is,

−X2/2σ2 2

e −Y 2/2σ

px,y(X, Y ) = .
2πσ2

Suppose we regard (x, y) as the Cartesian coordinates of a point in the plane, and
let (r, φ) be the polar-coordinate representation of this point, viz., x = r cos(φ) and
y = r sin(φ) for r ≥ 0 and 0 ≤ φ < 2π

(a) Find pr,φ(R,Φ), the joint pdf of r and φ.

(b) Find the marginal pdfs, pr(R) and pφ(Φ), of these random variables, and prove
that r and φ are statistically independent random variables.
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Problem 1.5
Let N, x be joint random variables. Suppose that x is exponentially distributed with
mean m, i.e.,

px(X) =

 e−X/m , for xm ≥ 0,

0, otherwise,

is the pdf of x. Also suppose that, given x = X, N is Poisson distributed with mean
value X, i.e., the conditional pmf of N is,

Xn

PN |x(n | x = X) = e−X , for n = 0, 1, 2, . . .
n!

(a) Use the integral formula,∫ ∞
dZZne−Z = n!, for n = 0, 1, 2, . . . ,

0

(where 0! = 1) to find PN(n), the unconditional pmf of N .

(b) Find MN(jv), the characteristic function associated with your unconditional
pmf from (a).

(c) Find E(N) and var(N), the unconditional mean and variance of N , by differ-
entiating your characteristic function from (b).

Problem 1.6
Let x, y be jointly Gaussian random variables with zero-means mx = my = 0, identical
variances σ2

x = σ2
y = σ2, and nonzero correlation coefficient ρ. Let w, z be two new

random variables obtained from x, y by the following transformation,

w = x cos(θ) + y sin(θ)

z = −x sin(θ) + y cos(θ),

for θ a deterministic angle satisfying 0 < θ < π/2.

(a) Show that this transformation is a rotation in the plane, i.e., (w, z) are obtained
from (x, y) by rotation through angle θ

(b) Find pw,z(W,Z) the joint pdf of w and z.

(c) Find a θ value such that w and z are statistically independent.
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Problem 1.7
Here we shall examine some of the eigenvalue/eigenvector properties of an Hermitian
matrix. Let x be an N -D column vector of complex numbers whose nth element is
xn, let A be an N ×N matrix of complex n[umbers whose ijth element is aij, and let
† denote conjugate transpose so that x† = x∗1 x∗2 · · · x∗N

]
and A† is an N ×N

matrix whose ijth element is a∗ji.

(a) Find the adjoint of A, i.e., the matrix B which satisfies (By)†x = y†(Ax) for all
x,y ∈ CN , where CN is the space of N -D vectors with complex-valued elements.
If B = A, for a particular matrix A, we say that A is self-adjoint, or Hermitian.
Assume that A is Hermitian for parts (b)–(d)

(b) Let A have eigenvalues {µn : 1 ≤ n ≤ N } and normalized eigenvectors {φn :
1 ≤ n ≤ N } obeying

Aφn = µnφn, for 1 ≤ n ≤ N .

φ†nφn = 1, for 1 ≤ n ≤ N .

Show that µn is real valued for 1 ≤ n ≤ N .

(c) Show that if µn 6= µm then φ†nφm = 0, i.e., eigenvectors associated with distinct
eigenvalues are orthogonal.

(d) Suppose there are two linearly independent eigenvectors, φ and φ′ which have
the same eigenvalue, µ. Show that two orthogonal vectors, θ and θ′ can be
constructed satisfying,

Aθ = µθ,

Aθ′ = µθ′,

θ†θ′ = 0.

(e) Because of the results of parts (c) and (d), we can assume that {φn : 1 ≤ n ≤
N } is a complete orthornormal (CON) set of vectors on CN , i.e.,

1
φ†nφm =

{
, for n = m,

0, for n 6= m.

Let IN be the identity matrix on this space. Show that

N

IN =
∑

φnφ
†
n.

n=1
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Show that
N

A =
∑

µnφnφ
†
n.

n=1

Problem 1.8
Here we introduce the notion of overcompleteness. Consider 2-D real Euclidean space,
R2, i.e., the space of 2-D column vectors x where xT =

[
x1 x2

]
, with x1 and x2

being real numbers. Define three vectors as follows:

x1 =

[ √
3/2

−1/2

]
, x2 =

[
0

1

]
, x3 =

[
−
√

3/2

−1/2

]
.

(a) Make a labeled sketch of these three vectors on an (x1, x2) plane, and find xTnxm
for 1 ≤ n,m ≤ 3. Are these three vectors normalized (unit length)? Are they
orthogonal?

(b) Show that any two of {x1,x2,x3} form a basis for the space R2, i.e., any y ∈ R2

can be expressed as

y = ax1 + a′ x2 = bx1 + b′ x3 = cx2 + c′x3,

for appropriate choices of the (real-valued) coefficients {a, a′, b, b′, c, c′}.

(c) Show that the 2× 2 identity matrix, I2, can be expressed as

2
I2 =

∑3
xnx

T

3 n .
n=1

Use this result to prove that for any x ∈ R2 that

2
x = .

3

∑3
(xTnx)xn

n=1

Comment: Let eT1 =
[

1 0
are a complete orthornormal set

]
and eT 0 1 be the standard basis of R2

2 = . They
of vectors

[
on R2

]
, hence

2

I2 =
∑

ene
T
n ,

n=1

and the standard representation for x ∈ R2 can be expressed as

2

x =
∑

(eTnx)en.
n=1
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We say that {x1,x2,x3} form an overcomplete basis for R2 because any two of them
is enough to represent an arbitrary vector in this space, but all three taken together
resolve the identity [their outer-product-sum times a scale factor equals the identity
matrix, as shown in part (c)] hence the expansion coefficients needed to represent an
arbitrary vector in this overcomplete basis can be found via projection [as shown in
part(c)].
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