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Problem 3.1
Here we shall extend the results of Problem 2.2 to include classically-random polar-
izations.

(a) We have that

rT r = r21 + r22 + r23
= 4[Re(〈αx∗αy〉)]2 + 4[Im(〈αx∗αy〉)]2 + (

2 2 2 2

〈|α 〉 − 〈|αy|2〉)2x|2

= 4|〈αx∗αy〉| + (〈|αx| 〉 − 〈|αy )
2

| 〉
≤ 4〈|αx| |〉〈|αy|2〉+ (〈|αx|2〉 − 〈|α 2

y| 〉)2,

via the Schwarz inequality applied to the first term. Squaring out the last term
and doing some cancellation then yields,

rT r ≤ 〈|αx|2〉2 + 2〈|α 2 2 2 2
x

2

| 〉〈|αy| 〉+ 〈|αy| 〉
= (〈|αx| 〉+ 〈|αy|2〉)2 = 12 = 1.

(b) Because ra is a real-valued, unit-length vector and r is a real-valued vector
whose length is at most one, we have that

1 + rT
0 ≤ a r 1

2
≤

via the Schwarz inequality applied to the second term. This same argument
applies to (1 + rTb r)/2. Thus to prove that we have a proper probability distri-
bution, we need only show that the probabilities sum to one. We are given that
ra and rb are the Poincaré sphere representations of the orthogonal polarization
states ia and ib, respectively. We commented in the solution to Problem 2.2
that these Poincaré sphere representations must then satisfy rb = −ra, hence
the proof is trivial once this condition is employed:

1 + rT r
Pr(polarized along ia) + Pr(polarized along ib) = a

2
+

1 + rTb r

2

=
2 + rTa r− rTa r = 1.

2

Now we need only prove the ra = −rb assertion.

Defining the component representations,

ia =

[
αx β
α

]
ib =

y

[
x

βy

]
,
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we have that
i†aib = αx

∗βx + αy
∗βy = 0, (1)

because the ia and ib polarizations are orthogonal. Thus, without loss of gener-
ality we may say that

ib =

[
−αy∗

]
,

αx
∗

as this choice gives a unit-length vector that satisfies the orthogonality condi-
tion. Now, by direct calculation we find that

2Re(β∗ xβy)
rb = 2Im(βx

∗βy)


α

=


−2Re(α  y x

∗)
−2Im(αyαx

∗) −
|βx|2


= ra,

− |βy|2 |αy|2 − |α |2x

and our proof is done.



(c) If r = 0, then it is obvious (from the measurement probability definitions)
that Pr(polarized along ia) = Pr(polarized along ib) = 1/2. Note that this
is true regardless of what pair of orthogonal polarizations are chosen for the
measurements.

When 
0
 

0
=


0

r =  1
0

 ra  0
1

 

i.e., a right circularly polarized photon measured

 rb =  0
−1

 ,
in the x-y linear polarization

basis, we find that Pr(polarized along ia) = Pr(polarized along ib) = 1/2. This
equiprobable situation does not hold, however, for the right circularly polarized
photon when we measure in other bases. In particular, for

0
ra = −rb = 1

0



i.e., if we measure in the circularly-polarized


basis,


then we will obtain

Pr(polarized along ia) = 1− Pr(polarized along ib) = 1.

Problem 3.2
Here we introduce the notion of a density operator, i.e., a way to account for classical
randomness limiting our knowledge of a quantum system’s state.

(a) This is standard, simple, classical probability theory. We know that the prob-
ˆability of observing the outcome on when we measure O on a quantum system
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in state |ψ 〉 is Pr( o | |ψ 〉 ) ≡ |〈o |ψ 〉|2m n m n m . If pm is the probability that the
system is in state |ψm〉, for 1 ≤ m ≤M with

∑M
m=1 pm = 1, then

M

Pr(on) =
∑ M

pm Pr( on | |ψm〉 ) =
∑

p 2
m|〈on|ψm〉| , for 1 ≤ n < ,

m=1 m=1

∞

is the unconditional probability of getting this outcome.

(b) Expanding the squared magnitude that appears in the answer from (a) gives
us,

M

Pr(on) =
∑ M

p 2
m|〈on|ψm =

m=1

〉|
m

∑
pm

=1

〈on|ψm〉〈ψm|on〉

M

= 〈on|

(
m

∑
pm

=1

|ψm〉〈ψm|

)
|on〉

= 〈on|ρ̂|on〉, for 1 ≤ n <∞,

QED.

(c) Again, we start with straightforward, classical probability theory:

∞

〈Ô〉 ≡
∑

on Pr(on),
n=1

ˆis the expected value of the outcome of the O measurement. Now, using the
result of (b) we have that

∞

〈Ô〉 =
∑

on〈on|ρ̂
n=1

|on〉

∞

=
∑ ∞

ˆon ρ̂ ok ok ok on = tr(ρ̂O),
n=1

〈 |

( ∑
k=1

| 〉〈 |

)
| 〉

ˆwhere the last equality employs the diagonal representation of O, viz.,

∞

Ô =
∑

ok|ok
k=1

〉〈ok|,

ˆand the penultimate equality relies on the orthonormality of the O eigenkets,
i.e.,

〈on|om〉 = δnm.
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Problem 3.3
Here we will explore the difference between a pure state and a mixed state, i.e.,
the difference between knowing that a quantum system is in a definite state |ψ〉 as
opposed to having a classically-random distribution over a set of such states, namely
a density operator ρ̂.

ˆ(a) Suppose we measure an observable O with eigenvalues { on : 1 ≤ n < ∞} and
complete orthonormal (CON) eigenkets { |on〉 : 1 ≤ n <∞}. From Problem 3.2

ˆwe know that if we measure O on the quantum system, when that system has
density operator ρ̂, the probability of getting the outcome on is

∞

Pr(on) = 〈on|ρ̂|on〉 =
∑

ρk on ρ
2

k .
k=1

|〈 | 〉|

ˆIf the eigenkets of O are identical to those of ρ̂, i.e., |on〉 = |ρn〉, for 1 ≤ n <
∞, then the general result reduces to Pr(on) = ρn, i.e., the {ρn} must be a
probability distribution. This is what we were asked to show.

(b) This is trivial. We can use any CON basis to evaluate a trace. So, let us choose
the eigenkets of ρ̂. We then find that,

∞ ∞

tr(ρ) =
∑ ∞

ˆ
k=1

〈ρk|ρ̂|ρk〉 =
∑

ρk〈ρk|ρk =
k=1

〉
∑

ρk = 1.
k=1

(c) Combining the result of (a) with the setup in Problem 3.2, it should be clear
that ρk is the probability that the quantum system is in state |ρk〉. If the
system is in a pure state |ψ〉, i.e., there is probability one that the system is in
this state, we can represent that situation in density operator form by setting
ρ1 = 1 and |ρ1〉 = |ψ〉. This leads to a projector-valued density operator,
ρ̂ = |ρ1〉〈ρ1| = |ψ〉〈ψ|. It is now easy to verify that,

ρ̂2 = |ψ〉 (〈ψ|ψ〉) 〈ψ| = |ψ〉〈ψ| = ρ.̂

Thus, tr(ρ̂2) = tr(ρ̂) = 1.

(d) Using the diagonal representation of the density operator, we find that(∑∞ ∞

ρ̂2 = ρn|ρn〉〈ρn|

)(∑
ρk ρ

n=1 k=1

| k〉〈ρk|

)
∞

=
∑∑∞

ρnρk|ρn〉 ( k

=1

〈ρn ρ
n=1 k

|ρk〉) 〈 |

∞

=
∑

ρ2n
n=1

|ρn〉〈ρn|,
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via the orthonormality of the density operator’s eigenkets. Taking the trace in
the {|ρk〉} basis now gives,

∞

tr(ρ̂2) =
∑

ρ2k,
k=1

cf. the derivation in (b). Finally, because 0 ≤ ρk ≤ 1 implies that ρ2k ≤ ρk for
1 ≤ k <∞, we get

∞

tr(ρ̂2) ≤ ρk = tr(ρ̂) = 1.
k=1

Equality only occurs here if and only

∑
if ρk = δkn for some non-negative integer

n, i.e., if ρ̂ = |ρn〉〈ρn|, meaning that the system is in the pure state |ρn〉 with
probability one. DONE!

Problem 3.4
In this problem we shall explore the density operator for single-photon polariza-
tion. Suppose that we are interested in the polarization state of a frequency-ω,
+z-propagating, single photon. We know that a pure state of such a photon can
be written as the 2-D complex-valued ket vector,

|i〉 ≡
[
αx ,
αy

]
in the x-y (horizontal-vertical) basis, with |αx|2 + |αy|2 = 1. If we measure the
polarization state of this photon using the basis,

|i′〉 ≡
[
αx
′

,
αy
′

]
and

α′∗|i′⊥〉 ≡ y ,−αx′∗

where |α′ |2 2

[ ]
x + |αy′ | = 1, then we will get outcome i′ with probability

Pr( i′ | |i〉 ) = |〈i′|i〉|2,

and outcome i′ with probability⊥

Pr( i′ i ) = i′ i 2 = 1 Pr( i′ i )⊥ | | 〉 |〈 ⊥| 〉| − | | 〉

(a) It is trivial to verify that the density operator for this pure state,

ρ̂ = |i〉〈i|
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gives these same probabilities via

Pr( i′ | |i〉 ) = 〈i′|ρ̂|i′〉,

and
Pr( i′ | |i〉 ) = 〈i′ |ρ̂|i′ 〉 = 1− Pr( i′ | |i〉 ),⊥ ⊥ ⊥

because
〈i′|i〉〈i|i′〉 = |〈i′|i〉|2 = |αx′∗αx + αy

′∗αy|2,

and
〈i′ i i i′ = i′ i 2 = α′ α α′ α 2,⊥| 〉〈 | ⊥〉 |〈 ⊥| 〉| | y x − x y|

where the evaluations in terms of the x-y representations will be of use in (b).
We also have that

〈i′|i〉〈i|i′〉+ 〈i′ i⊥| 〉〈i|i′ 〉 = 〈i| (|i′⊥ 〉〈i′|+ |i′⊥〉〈i′⊥|) |i〉 = 〈 ˆi|I|i〉 = 1, (2)

ˆwhere I is the identity operator, and the second equality follows from {|i′〉, |i′⊥〉}
being a basis for the polarization state of a +z-propagating photon.

(b) Now suppose that the single photon is in a mixed state, i.e., that αx and αy are
complex-valued random variables whose joint distribution ensures that |α 2

x
2

| +
|αy| = 1 with probability one. To show that the density operator ρ̂ can now
be written in the form [

〈|αx|2〉 〈αxαy∗
ρ̂ =

〉
〈αx∗αy〉 〈|αy|2〉

]
,

we will verify that this expression yields the proper formulas for the uncondi-
tional measurement probabilities, Pr(i′) and Pr(i′ ), i.e.,⊥

〈i′|ρ̂|i′〉 = Pr(i′) =

∫
dαx

∫
dαy p(αx, αy) Pr( i′ | |i〉 ),

and

〈i′ |ρ̂|i′ 〉 = Pr(i′ ) =

∫
dαx

∫
dαy p(αx, α

′
⊥ ⊥ y) Pr( i⊥ ⊥ | |i〉 ),

where p(αx, αy) is the joint probability density for αx and αy. This is easy to
accomplish by using the x-y representations for |i′〉 and |i′⊥〉 in conjunction with
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the x-y representation for ρ̂. We have that

αx
i′ ρ̂ i′ =

[
αx
′∗ αy

′∗ ] [ 〈| |2〉 〈α ∗
| | 〉 xα〈 y〉 αx

′

〈αx∗αy〉 〈|α 2
y| 〉

][
αy
′

]
= |αx′ |2〈|αx|2〉+ αx

′∗αy
′ 〈αxαy∗〉+ αx

′ αy
′∗〈αx∗αy〉+ |αy′ |2〈|αy|2〉〈[ α′∗ ′∗ ] [ x α

= αx αy
αy

] [
αx
∗ αy

∗ ] [ x
′

α∫ ∫ y
′

]〉

= dαx dαy p(αx, αy)|αx′∗αx + α 2
y
′∗αy|

=

∫
dαx

∫
dαy p(αx, αy) Pr( i′ | |i〉 ).

Likewise we find that[ 〈|α |2〉 〈α α∗
〈i′⊥|ρ̂|i′⊥〉 = αy

′ 〉 α′∗
− y
α

[
y

x
′ x x

〈αx∗αy〉 〈|αy|2〉

][
−αx′∗

]
= |αy′ 2

]
| 〈|αx|2〉 − αx′∗αy′ 〈αxαy∗〉 − αx′ αy′∗〈α∗α 〉+ |α′ |2〈|α |2〉

=

〈 [ x y x y[
αy
′ −αx′

] αx
] [ αy

′∗
αx
∗ αy

∗
αy

] [
−αx′∗

]〉

=

∫
dαx

∫
dαy p(αx, αy)|αy′ αx − αx′ α 2

y|

=

∫
dαx

∫
dαy p(αx, αy) Pr( i′ | |i〉 ).

Note that we have just shown that the preceding form of the density operator is
equivalent to the mixed-state Poincaré vector that we studied in Problem 3.1.

Problem 3.5
Commutators are very important. This problem develops two key points about them.

(a) This part is easy. Because the adjoint of the product of two operators is the
reverse-order product of their two adjoints, we have that[

ˆ ˆ
]†

ˆ† ˆ† − ˆ† ˆ† ˆ ˆA,B = B A A B = BA− ˆ ˆAB = − ˆ ˆA,B ,

ˆ ˆwhere the penultimate equality follows from the fact that A

[
and

]
B are Hermitian

operators. Thus, commutators are anti-Hermitian, viz., they equal minus their
ˆadjoints. As a result, if we define an operator C via

1
Ĉ ≡ ˆ

j

[
ˆA,B
]
,
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we find that,
1

Ĉ† =
1ˆ

−j

[
ˆA,B
]†

= − ˆ ˆ ˆA,B = C,
−j

ˆproving that C is Hermitian.

[ ]

ˆ(b) First let’s employ the A eigenvalue/eigenvector properties:

Â|an〉 = an|an〉 and 〈an|Â = an〈an|,
ˆwhere we have used the fact that A is Hermitian and the {an} are real, to show

that,
〈an| ˆ ˆAB| ˆam〉 = an〈an|B|am〉,

and
〈an| ˆ ˆBA|am〉 ˆ= am〈an|B|am〉,

for 1 ≤ n,m <∞ ˆ ˆ. Because the commutator of A and B is zero, we know that

〈an|
[

ˆ ˆA,B
]
|am〉 = 0.

The left-hand side of the preceding equation can then be expanded to yield,

〈an| ˆ ˆAB|am〉 − 〈an| ˆ ˆBA|am〉 ˆ= (an − am)〈an|B|am〉 = 0.

ˆSo, because the eigenvalues of A are distinct, we get

〈an|B̂|am〉 = 0, for n 6= m.

Because the {|an〉} are complete, this result implies that

B̂|an〉 = Kn|an〉,
ˆwhere Kn is a constant, i.e., |an〉 is an eigenket of B. This proof works for every

ˆ ˆ ˆeigenket of A: every A eigenket is also a B eigenket. To prove that the converse
is true, we merely start from

B̂|bn〉 = bn| ˆbn〉 and 〈bn|B = bn〈bn|,

and then use the zero-commutator to get,

(bm − bn)〈bn|Â|bm〉 = 0, for n 6= m.

ˆBecause the eigenvalues of B are distinct, this implies that

〈bn|Â|bm〉 = 0, for n 6= m,

and because the {|bn〉} are complete we find that

Â|bn〉 = Kn
′ |bn〉,

for some constant Kn
′ , viz., every |bn〉 ˆis an eigenket of A.
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Problem 3.6
Here we introduce the notation of tensor products, to permit us to deal with multiple
quantum systems.

(a) Basically, this problem is trying to convince you that tensor product stuff is
notationally cumbersome, but really easy to work with. Suppose we start with
a product state, |φn〉1 ⊗ |θm〉2 from the basis { |φn〉1 ⊗ |θm〉2 : 1 ≤ n,m

ˆ
≤ ∞}

discussed in the problem statement. The adjoint operator C† must satisfy,

(〈2〈θm| ⊗ 1〈φn| ˆ)[C†(|φk〉 ⊗ | 〉 { 〈 | ⊗ 〈 | ˆ
1 θl 2)] = (2 θl 1 φk )[C(|φn〉1 ⊗ |θm〉2)]}∗

= {(2〈 ˆ ˆθl| ⊗ 1〈φk|)[(A1|φn〉1)⊗ (B2|θm〉2)]}∗

= (1〈φk|Â1| ˆφn〉1)∗(2〈θl|B2|θm〉2)∗

= (1〈φn|Â1| ˆφk〉1)(2〈θm|B2|θl〉2),

ˆ ˆwhere the last equality uses the fact that A1 and B2 are Hermitian. Because
ˆ ˆ ˆ ˆ ˆthis result must hold for all n,m, k, l, it follows that C† = A1 ⊗B2 = C, i.e., C

is Hermitian.

Let { |an〉1 : 1 ≤ n < ∞} ˆand { |bm〉2 : 1 ≤ m < ∞} be the eigenkets of A1
ˆand B2, respectively. These eigenkets are CON sets on their respective Hilbert

spaces, H1 and H2. We now have that,

Ĉ(|an〉1 ⊗ |bm〉 ˆ
2) = (A1|an〉1)⊗ ˆ(B2|bm〉2) = (an|an〉1)⊗ (bm|bm〉2)

= anbm(|an〉1 ⊗ |bm〉2),

so that | ˆan〉1 ⊗ |bm〉2 is an eigenket of C with associated eignevalue anbm, for
1 ≤ n,m < ∞. Because of the CON nature of {|an〉1} and {|bm〉2} on their
respective Hilbert spaces, it follows that {|an〉1 ⊗ |bm〉2} is CON on H.

(b) It is straightforward to show that

Pr(an, bm) = |〈ψ|(|a 2
n〉1 ⊗ |bm〉2)| ,

is a proper probability distribution. Because of the magnitude squared opera-
tion, the probability is non-negative. The Schwarz inequality guarantees that

Pr(an, bm) ≤ |〈ψ|ψ〉|2|(2〈bm| ⊗ 1〈an|)(|an〉1 ⊗ |b 2
m〉2)|

= |〈ψ|ψ〉|2||1〈a |a 2
n〉 2

n 1| |2〈bm|bm〉2| = 1,

where the last equality follows because |ψ〉, |an〉1, and |bm〉2 are all unit-length
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kets. To show that the probability distribution sums to one, we argue as follows:∑∞ ∑∞ ∞ ∞

Pr(an, bm) =
∑∑

〈ψ|(|an〉1 ⊗ |bm〉2)(2〈bm| ⊗ 1〈an )
n=1 m=1 n=1 m=1

| |ψ〉

= 〈ψ|

(∑∞ ∞

n=1

∑
( n

=1

|a
m

〉1 ⊗ |bm〉2)(2〈bm| ⊗ 1〈an|)

)
|ψ〉

= 〈ψ|

[(
ˆ

∑∞ ∞

an 11 an bm 22 bm ψ( n=1

| 〉 〈 |

)
⊗

(
m

∑
=1

| 〉 〈 |

)]
| 〉

= 〈ψ| ˆI1 ⊗ I2
)
|ψ〉,

where in the next to last equality we have used the tensor form of the outer
product

(|an〉1 ⊗ |bm〉2)(2〈bm| ⊗ 1〈an|) = (|an〉11〈an|)⊗ (|bm〉22〈bm|),
ˆand in the last equality we have used the completeness relations for the A1

ˆand B2 eigenkets. So, because the identity operator for H ≡ H1 ⊗H2 satisfies
ˆ ˆI = I1 ⊗ Î2 in terms of the identity operators on H1 and H2, we have∑∞ ∑∞

ˆPr(an, bm) = 〈ψ|I|ψ〉 = 〈ψ|ψ〉 = 1,
n=1 m=1

as was to be shown.

Our next task is to find the marginal probability distributions. Using the inter-
mediate steps of the previous derivation we have that,

∞

Pr(an) =
m

∑
Pr(an, bm) =

=1

〈ψ|

(
m

∞

∑∞
(|an〉1 ⊗ |bm〉2)(2〈bm| ⊗ 1

=1

〈an|)

)
|ψ〉

= 〈ψ|

[
|an〉11〈an| ⊗

(∑
|bm〉22〈bm|

)]
|ψ( m=1

〉

= 〈ψ| |an〉11〈an| ⊗ Î2

pro

)
|ψ〉.

A similar cedure yields,

Pr(bm) = 〈ψ|
(
Î1 ⊗ |bm〉22〈bm|

(c) We now use the results of (b) for ψ = ψ ψ

)
|ψ〉.

| 〉 | 1〉1⊗| 2〉2, i.e., a product state. Here
we find that,

ˆPr(an) = 〈ψ|
(
|an〉11〈an| ⊗ I2 |ψ〉

ˆ= ( 1〈ψ1|an〉11〈an|ψ1

)
〉1) 2〈ψ2|I2|ψ2〉2

= 1〈ψ1|an〉 2
11〈an|ψ1〉1 = |1〈ψ1|an〉1| .
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A similar derivation yields,

Pr(bm) = |2〈ψ2|bm〉 2
2| .

These results are very interesting because they are, respectively, the probability
ˆdistributions for measuring A1 on system 1 when it is in state |ψ1〉1 and for

ˆmeasuring B2 on system 2 when it is in state |ψ2〉2.
Turning to the joint statistics we find that the product state |ψ〉 gives,

Pr(an, bm) = |( 2〈ψ2| ⊗ 1〈ψ1|)(|an〉 2
1

2

⊗ |bm〉2)
= (| 2

|
1〈ψ1|an〉1| )(|2〈ψ2|bm〉2| )

= Pr(an) Pr(bm).

ˆSo, we have shown that measuring a product observable, A1 on system 1 and
B̂2 on system 2 when the composite system S is in a product state |ψ〉 =
|ψ1〉1 ⊗ |ψ2〉2 leads to statistically independent outcomes. This is not generally
the case when |ψ〉 isn’t a product state, as we shall see later this term when we
treat entanglement.

Problem 3.7
Here we prove that it is impossible to clone the unknown state of a quantum system
by means of a unitary evolution. It is a proof by contradiction. Suppose that we
have a quantum system whose Hilbert space of states is HS, where S indicates that
this is the source system. Suppose too that we have a target system whose Hilbert
space of states is HT . We will assume that these two Hilbert spaces have the same
dimensionality, e.g., 2.

ˆWe wish to construct a perfect cloner, viz., a unitary operator, U , on the tensor
product space H ≡ HS ⊗HT such that

Û(|ψ〉S ⊗ |0〉T ) = |ψ〉S ⊗ |ψ〉T , (3)

where |ψ〉S is an arbitrary unit-length ket in HS, and |0〉T is a reference (“blank”)
unit-length ket in HT .

Let |ψ1〉S and |ψ2〉S be two distinct, unit-length kets in HS, let α and β be two
non-zero complex numbers, and assume that we have found an ideal cloner operator
Û satisfying Eq. (3) for all unit-length source kets.

(a) We define
α ψ| 1 S + β ψ2 S

ψ′ S
| |〉 =
〉 〉√ .

|α|2 + |β|2 + 2Re[α∗β(S〈ψ1|ψ2〉S)]

By inspection, we have that |ψ′〉S is a unit-length ket in HS, i.e., the denomina-
tor is what is needed to normalize the numerator to unit length. Thus, because
Û is a unitary operator on H, we have that dθ, the length of

|θ〉 ≡ Û(|ψ′〉S ⊗ |0〉T ),

11



is given by

d2θ = 〈θ|θ〉 = (T 〈 ˆ0| ⊗ S〈ψ′|)U †Û(|ψ′〉S ⊗ |0〉T )

= (T 〈0| ⊗ S〈 ˆψ′|)I(|ψ′〉S ⊗ |0〉T ) = (T 〈0|0〉T )(S〈ψ′|ψ′〉S) = 1.

(b) We now expand out |ψ′〉S appearing in the tensor product |ψ′〉S ⊗ |0〉T and
obtain

α|ψ′〉S ⊗ |0〉T =

(√ ( ψ
|α|2 + |β|2 + 2Re[α∗β(S〈ψ1|

1 S 0 T )
ψ2 )]

〉
〉S

)
| ⊗ | 〉

+

(
β√ (

α 2 + β 2 + 2Re[α∗β(S )]

)
|ψ2

ψ1 ψ2 S

〉S ⊗ |0〉| | | | 〈 | 〉 T ).

= α′(|ψ1〉S ⊗ |0〉T ) + β′(|ψ2〉S ⊗ |0〉T ), (4)

with the obvious definitions for α′ and β′ ˆ. From the linearity of U we then have
that

|θ〉 = α′Û(|ψ1〉S ⊗ |0〉T ) + β′Û(|ψ2〉S ⊗ |0〉T )

= α′(|ψ1〉S ⊗ |ψ1〉T ) + β′(|ψ2〉S ⊗ |ψ2〉T ).

(c) From (b) we have that the length of |θ〉 obeys

d2θ = 〈θ|θ〉

= |α′|2 + |β′2|+ 2Re[α′∗β′(S〈ψ1|ψ2〉 2
S) ]

=
|α|2 + |β2|+ 2Re[α∗β(S〈ψ1|ψ2〉S)2]

.
|α|2 + |β2|+ 2Re[α∗β(S〈ψ1|ψ2〉S)]

This expression for dθ does not equal 1 for non-zero α and β unless S〈ψ1|ψ2〉S = 0
or 1. Thus, we have a contradiction in that Eq. (3) cannot be satisfied for

ˆarbitrary source states. So, there does not exist a unitary operator U that is a
perfect cloner.

Problem 3.8
Here we prove that it is impossible to erase the unknown state of a quantum system
by means of a unitary evolution. It is a proof by contradiction. Suppose that we
have a quantum system whose Hilbert space of states is HS, where S indicates that
this is the source system. Suppose too that we have an ancilla system whose Hilbert
space of states is HA. We will assume that these two Hilbert spaces have the same
dimensionality, e.g., 2.

12



ˆWe wish to construct a perfect eraser, viz., a unitary operator, U , on the tensor
product space H ≡ HS ⊗HA such that

Û(|ψ〉S ⊗ |0〉A) = |0〉S ⊗ |0〉A, (5)

where |ψ〉S is an arbitrary unit-length ket in HS, and |0〉A is a reference (“blank”)
unit-length ket in HA.

Let |ψ1〉S and |ψ2〉S be two distinct, unit-length kets in HS, let α and β be two
non-zero complex numbers, and assume that we have found an ideal eraser operator
Û satisfying Eq. (5) for all unit-length source kets.

(a) We define
α|ψ′〉S =
|ψ1〉S + β|ψ2〉S√ .

|α|2 + |β|2 + 2Re[α∗β(S〈ψ1|ψ2〉S)]

By inspection, we have that |ψ′〉S is a unit-length ket in HS, i.e., the denomina-
tor is what is needed to normalize the numerator to unit length. Thus, because
Û is a unitary operator on H, we have that dθ, the length of

| ˆθ〉 ≡ U(|ψ′〉S ⊗ |0〉A),

is given by

d2θ = 〈θ| ˆ ˆθ〉 = (A〈0| ⊗ S〈ψ′|)U †U(|ψ′〉S ⊗ |0〉A)

ˆ= (A〈0| ⊗ S〈ψ′|)I(|ψ′〉S ⊗ |0〉A) = (A〈0|0〉A)(S〈ψ′|ψ′〉S) = 1.

(b) We now expand out |ψ′〉S appearing in the tensor product |ψ′〉S ⊗ |0〉A and
obtain

α|ψ′〉S ⊗ |0〉A =

(√
|α|2 + |β|2 + 2Re[α∗β(S〈ψ1|ψ2〉S)]

)
(|ψ1〉S ⊗ |0〉A)

+

(
β√ (|ψ 〉 ⊗ |0〉 ).

| | 2
α|2 + |β|2 + S〈ψ1 ψ2〉S)]

)
S A

2Re[α∗β(

= α′(|ψ1〉S ⊗ |0〉A) + β′(|ψ2〉S ⊗ |0〉A), (6)

ˆwith the obvious definitions for α′ and β′. From the linearity of Uwe then have
that

| ˆθ〉 = α′U(|ψ1〉S ⊗ |0〉 ˆ
A) + β′U(|ψ2〉S ⊗ |0〉A)

= (α′ + β′)(|0〉S ⊗ |0〉A).
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(c) From (b) we have that the length of |θ〉 obeys

d2θ = 〈θ|θ〉

= |α′|2 + |β′|2 + 2Re(α′∗β′)

=
|α|2 + |β|2 + 2Re(α∗β)

.
|α|2 + |β2|+ 2Re[α∗β(S〈ψ1|ψ2〉S)]

This expression for dθ does not equal 1 for non-zero α and β unless S〈ψ1|ψ2〉S =
1, which would mean that |ψ1〉S = |ψ2〉S. Thus, we have a contradiction in that
Eq. (5) cannot be satisfied for arbitrary source states. So, there does not exist

ˆa unitary operator U that is a perfect eraser.
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