Fundamentals of probability. 6.436/15.085

LECTURE 25
Markov chains III. Periodicity, Mixing, Absorption

25.1. Periodicity

Previously we showed that when a finite state M.c. has only one recurrent class and π is the corresponding stationary distribution, then $\mathbb{E}\left[N_{i}(t) \mid X_{0}=k\right] / t \rightarrow \pi_{i}$ as $t \rightarrow \infty$, irrespective of the starting state k. Since $N_{i}(t)=\sum_{n=1}^{t} \mathbf{1}_{\left\{X_{n}=i\right\}}$ is the number of times state i is visited up till time t, we have shown that $\frac{1}{t} \sum_{n=1}^{t} \mathbb{P}\left(X_{n}=i \mid X_{0}=k\right) \rightarrow \pi_{i}$ for every state k, i.e., $p_{k i}^{(n)}$ converges to π_{i} in the Cesaro sense. However, $p_{k i}^{(n)}$ need not converge, as the following example shows. Consider a 2 state Markov Chain with states $\{1,2\}$ and $p_{12}=1=p_{21}$. Then $p_{12}^{(n)}=1$ when n is odd and 0 when n is even.

Let x be a recurrent state and consider all the times when x is accessible from itself, i.e., the times in the set $I_{x}=\left\{n \geq 1: p_{x x}^{(n)}>0\right\}$ (note that this set is non-empty since x is a recurrent state). One property of I_{x} we will make use of is that it is closed under addition, i.e., if $m, n \in I_{x}$, then $m+n \in I_{x}$. This is easily seen by observing that $p_{x x}^{(m+n)} \geq p_{x x}^{(m)} p_{x x}^{(n)}>0$. Let d_{x} be the greatest common divisor of the numbers in I_{x}. We call d_{x} the period of x. We now show that all states in the same recurrent class has the same period.

Lemma 25.1. If x and y are in the same recurrent class, then $d_{x}=d_{y}$.
Proof. Let m and n be such that $p_{x y}^{(m)}, p_{y x}^{(n)}>0$. Then $p_{y y}^{(m+n)} \geq p_{x y}^{(m)} p_{y x}^{(n)}>0$. So d_{y} divides $m+n$. Let l be such that $p_{x x}^{(l)}>0$, then $p_{y y}^{(m+n+l)} \geq p_{y x}^{(n)} p_{x x}^{(l)} p_{x y}^{(m)}>0$. Therefore d_{y} divides $m+n+l$, hence it divides l. This implies that d_{y} divides d_{x}. A similar argument shows that d_{x} divides d_{y}, so $d_{x}=d_{y}$.

A recurrent class is said to be periodic if the period d is greater than 1 and aperiodic if $d=1$. The 2 state Markov Chain in the example above has a period of 2 since $p_{11}^{(n)}>0$ iff n is even. A recurrent class with period d can be divided into d subsets, so that all transitions from one subset lead to the next subset.

Why is periodicity of interest to us? It is because periodicity is exactly what prevents the convergence of $p_{x y}^{(n)}$ to π_{y}. Suppose y is a recurrent state with period $d>1$. Then $p_{y y}^{(n)}=0$ unless n is a multiple of d, but $\pi_{y}>0$. However, if $d=1$, we have positive probability of returning to y for all time steps n sufficiently large.

Lemma 25.2. If $d_{y}=1$, then there exists some $N \geq 1$ such that $p_{y y}^{(n)}>0$ for all $n \geq N$.
Proof. We first show that $I_{y}=\left\{n \geq 1: p_{y y}^{(n)}>0\right\}$ contains two consecutive integers. Let n and $n+k$ be elements of I_{y}. If $k=1$, then we are done. If not, then since $d_{y}=1$, we can find a $n_{1} \in I_{y}$ such that k is not a divisor of n_{1}. Let $n_{1}=m k+r$ where $0<r<k$. Consider $(m+1)(n+k)$ and $(m+1) n+n_{1}$, which are both in I_{y} since I_{y} is closed under addition. We have

$$
(m+1)(n+k)-(m+1) n+n_{1}=k-r<k .
$$

So by repeating the above argument at most k times, we eventually obtain a pair of consecutive integers $m, m+1 \in I_{y}$. If $N=m^{2}$, then for all $n \geq N$, we have $n-N=k m+r$, where $0 \leq r<m$. Then $n=m^{2}+k m+r=r(1+m)+(m-r+k) m \in I_{y}$.

When a Markov chain has one recurrent class (irreducible) and aperiodic, we have that the steady state behavior is given by the stationary distribution. This is also known as mixing.

Theorem 25.3. Consider an irreducible, aperiodic Markov chain. Then for all states x, y, $\lim _{n \rightarrow \infty} p_{x y}^{(n)}=\pi_{y}$.

For the case of periodic chains, there is a similar statement regarding convergence of $p_{x y}^{(n)}$, but now the convergence holds only for certain subsequences of the time index n. See $[\mathbf{1}]$ for further details.

There are at least two generic ways to prove this theorem. One is based on the PerronFrobenius Theorem which characterizes eigenvalues and eigenvectors of non-negative matrices. Specifically the largest eigenvalue of P is equal to unity and all other eigenvalues are strictly smaller than unity in absolute value. The P-F Theorem is especially useful in the special case of so-called reversible M.c.. These are irreducible M.c. for which the unique stationary distribution satisfies $\pi_{x} p_{x y}=\pi_{y} p_{y x}$ for all states x, y. Then the following important refinement of Theorem 25.4 is known.

Theorem 25.4. Consider an irreducible aperiodic Markov chain which is reversible. Then there exists a constant C such that for all states $x, y,\left|p_{x y}^{(n)}-\pi_{y}\right| \leq C\left|\lambda_{2}\right|^{n}$, where λ_{2} is the second largest (in absolute value) eigenvalue of P.

Since by P-F Theorem $\left|\lambda_{2}\right|<1$, this theorem is indeed a refinement of Theorem 25.4 as it gives a concrete rate of convergence to the steady-state.

25.2. Absorption Probabilities and Expected Time to Absorption

We have considered the long-term behavior of Markov chains. Now, we study the short-term behavior. In such considerations, we are concerned with the behavior of the chain starting in a transient state, till it enters a recurrent state. For simplicity, we can therefore assume that every recurrent state i is absorbing, i.e., $p_{i i}=1$. The Markov chain that we will work with in this section has only transient and absorbing states.

If there is only one absorbing state i, then $\pi_{i}=1$, and i is reached with probability 1 . If there are multiple absorbing states, the state that is entered is random, and we are interested in the absorbing probability

$$
a_{k i}=\mathbb{P}\left(X_{n} \text { eventually equals } i \mid X_{0}=k\right),
$$

i.e., the probability that state i is eventually reached, starting from state k. Note that $a_{i i}=1$ and $a_{j i}=0$ for all absorbing $j \neq i$. For k a transient state, we have

$$
\begin{aligned}
a_{k i} & =\mathbb{P}\left(\exists n: X_{n}=i \mid X_{0}=k\right) \\
& =\sum_{j=1}^{N} \mathbb{P}\left(\exists n: X_{n}=i \mid X_{1}=j\right) p_{k j} \\
& =\sum_{j=1}^{N} a_{j i} p_{k j} .
\end{aligned}
$$

So we can find the absorption probabilities by solving the above system of linear equations.
Example: Gambler's Ruin A gambler wins 1 dollar at each round, with probability p, and loses a dollar with probability $1-p$. Different rounds are independent. The gambler plays continuously until he either accumulates a target amount m or loses all his money. What is the probability of losing his fortune?

We construct a Markov chain with state space $\{0,1, \ldots, m\}$, where the state i is the amount of money the gambler has. So state $i=0$ corresponds to losing his entire fortune, and state m corresponds to accumulating the target amount. The states 0 and m are absorbing states. We have the transition probabilities $p_{i, i+1}=p, p_{i, i-1}=1-p$ for $i=1,2, \ldots, m-1$, and $p_{00}=p_{m m}=1$. To find the absorbing probabilities for the state 0 , we have

$$
\begin{aligned}
& a_{00}=1 \\
& a_{m 0}=0 \\
& a_{i 0}=(1-p) a_{i-1,0}+p a_{i+1,0}, \quad \text { for } i=1, \ldots, m-1
\end{aligned}
$$

Let $b_{i}=a_{i 0}-a_{i+1,0}, \rho=(1-p) / p$, then the above equation gives us

$$
\begin{aligned}
(1-p)\left(a_{i-1,0}-a_{i 0}\right) & =p\left(a_{i 0}-a_{i+1,0}\right) \\
b_{i} & =\rho b_{i-1}
\end{aligned}
$$

so we obtain $b_{i}=\rho^{i} b_{0}$. Note that $b_{0}+b_{1}+\cdots+b_{m-1}=a_{00}-a_{m 0}=1$, hence $\left(1+\rho+\ldots+\rho^{m-1}\right) b_{0}=$ 1 , which gives us

$$
b_{i}= \begin{cases}\frac{\rho^{i}(1-\rho)}{1-\rho^{m}}, & \text { if } \rho \neq 1 \\ \frac{1}{m}, & \text { otherwise }\end{cases}
$$

Finally, $a_{i, 0}$ can be calculated. For $\rho \neq 1$, we have for $i=1, \ldots, m-1$,

$$
\begin{aligned}
a_{i 0} & =a_{00}-b_{i-1}-\ldots-b_{0} \\
& =1-\left(\rho^{i-1}+\ldots+\rho+1\right) b_{0} \\
& =1-\frac{1-\rho^{i}}{1-\rho} \frac{1-\rho}{1-\rho^{m}} \\
& =\frac{\rho^{i}-\rho^{m}}{1-\rho^{m}}
\end{aligned}
$$

and for $\rho=1$,

$$
a_{i 0}=\frac{m-i}{m} .
$$

This shows that for any fixed i, if $\rho>1$, i.e., $p<1 / 2$, the probability of losing goes to 1 as $m \rightarrow \infty$. Hence, it suggests that if the gambler aims for a large target while under unfavorable odds, financial ruin is almost certain.

The expected time of absorption μ_{k} when starting in a transient state k can be defined as $\mu_{k}=\mathbb{E}\left[\min \left\{n \geq 1: X_{n}\right.\right.$ is recurrent $\left.\} \mid X_{0}=k\right]$. A similar analysis by conditioning on the first step of the Markov chain shows that the expected time to absorption can be found by solving

$$
\begin{aligned}
& \mu_{k}=0 \quad \text { for all recurrent states } k \\
& \mu_{k}=1+\sum_{j=1}^{N} p_{k j} \mu_{j} \quad \text { for all transient states } k .
\end{aligned}
$$

25.3. References

- Sections 6.4,6.6 [2].
- Section 5.5 [1].

BIBLIOGRAPHY

1. R. Durrett, Probability: theory and examples, Duxbury Press, second edition, 1996.
2. G. R. Grimmett and D. R. Stirzaker, Probability and random processes, Oxford University Press, 2005.

MIT OpenCourseWare
http://ocw.mit.edu

6.436J / 15.085J Fundamentals of Probability

Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

