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LECTURE 25 
Markov chains III. Periodicity, Mixing, Absorption 

25.1. Periodicity 

Previously we showed that when a finite state M.c. has only one recurrent class and π is the 
corresponding stationary distribution, then E[Ni(t) X0 = k]/t πi as t →∞, irrespective of the �t 

| →
starting state k. Since Ni(t) = n=1 1{Xn =i} is the number of times state i is visited up till time 

t, we have shown that 1 �t P(Xn = i X0 = k) πi for every state k, i.e., p(n) 
converges to πit n=1 | → ki 

in the Cesaro sense. However, p(n) 
need not converge, as the following example shows. Consider ki 

a 2 state Markov Chain with states {1, 2} and p12 = 1 = p21. Then p(n) 
= 1 when n is odd and 12 

0 when n is even. 
Let x be a recurrent state and consider all the times when x is accessible from itself, i.e., the 

(n)
times in the set Ix = {n ≥ 1 : pxx > 0} (note that this set is non-empty since x is a recurrent 
state). One property of Ix we will make use of is that it is closed under addition, i.e., if m, n ∈ Ix, 

(m+n) (m) (n)
then m + n ∈ Ix. This is easily seen by observing that pxx ≥ pxx pxx > 0. Let dx be the 
greatest common divisor of the numbers in Ix. We call dx the period of x. We now show that all 
states in the same recurrent class has the same period. 

Lemma 25.1. If x and y are in the same recurrent class, then dx = dy. 

(m) (n) (m+n) (m) (n)
Proof. Let m and n be such that pxy , pyx > 0. Then pyy ≥ pxy pyx > 0. So dy divides 
m+n. Let l be such that p(l) 

> 0, then p(m+n+l) (n) (l) (m) 
> 0. Therefore dy divides m+n+l,xx yy ≥ pyx pxxpxy 

hence it divides l. This implies that dy divides dx. A similar argument shows that dx divides dy, 
so dx = dy. � 

A recurrent class is said to be periodic if the period d is greater than 1 and aperiodic if d = 1. 
The 2 state Markov Chain in the example above has a period of 2 since p(n) 

> 0 iff n is even. 11 
A recurrent class with period d can be divided into d subsets, so that all transitions from one 
subset lead to the next subset. 

Why is periodicity of interest to us? It is because periodicity is exactly what prevents the 
convergence of pxy 

(n) 
to πy. Suppose y is a recurrent state with period d > 1. Then pyy 

(n) 
= 0 unless 

n is a multiple of d, but πy > 0. However, if d = 1, we have positive probability of returning to 
y for all time steps n sufficiently large. 
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Lemma 25.2. If dy = 1, then there exists some N ≥ 1 such that p(n) 
> 0 for all n ≥ N .yy 

Proof. We first show that Iy = {n ≥ 1 : p(
yy 
n) 

> 0} contains two consecutive integers. Let n 
and n + k be elements of Iy. If k = 1, then we are done. If not, then since dy = 1, we can 
find a n1 ∈ Iy such that k is not a divisor of n1. Let n1 = mk + r where 0 < r < k. Consider 
(m + 1)(n + k) and (m + 1)n + n1, which are both in Iy since Iy is closed under addition. We 
have 

(m + 1)(n + k) − (m + 1)n + n1 = k − r < k. 

So by repeating the above argument at most k times, we eventually obtain a pair of consecutive 
integers m, m + 1 ∈ Iy. If N = m2, then for all n ≥ N , we have n − N = km + r, where 
0 ≤ r < m. Then n = m2 + km + r = r(1 + m) + (m − r + k)m ∈ Iy. � 

When a Markov chain has one recurrent class (irreducible) and aperiodic, we have that the 
steady state behavior is given by the stationary distribution. This is also known as mixing. 

For the case of periodic chains, there is a similar statement regarding convergence of pxy , but 

Theorem 25.3. Consider an irreducible, aperiodic Markov chain. Then for all states x, y, 
lim pxy 

(n) 
= πy. 

n→∞ 

(n) 

now the convergence holds only for certain subsequences of the time index n. See [1] for further 
details. 

There are at least two generic ways to prove this theorem. One is based on the Perron-
Frobenius Theorem which characterizes eigenvalues and eigenvectors of non-negative matrices. 
Specifically the largest eigenvalue of P is equal to unity and all other eigenvalues are strictly 
smaller than unity in absolute value. The P-F Theorem is especially useful in the special case 
of so-called reversible M.c.. These are irreducible M.c. for which the unique stationary distri
bution satisfies πxpxy = πypyx for all states x, y. Then the following important refinement of 
Theorem 25.4 is known. 

Theorem 25.4. Consider an irreducible aperiodic Markov chain which is reversible. Then there 
exists a constant C such that for all states x, y, |pxy 

(n) − πy| ≤ C|λ2|n, where λ2 is the second 
largest (in absolute value) eigenvalue of P . 

Since by P-F Theorem |λ2| < 1, this theorem is indeed a refinement of Theorem 25.4 as it 
gives a concrete rate of convergence to the steady-state. 

25.2. Absorption Probabilities and Expected Time to Absorption 

We have considered the long-term behavior of Markov chains. Now, we study the short-term 
behavior. In such considerations, we are concerned with the behavior of the chain starting in a 
transient state, till it enters a recurrent state. For simplicity, we can therefore assume that every 
recurrent state i is absorbing, i.e., pii = 1. The Markov chain that we will work with in this 
section has only transient and absorbing states. 

If there is only one absorbing state i, then πi = 1, and i is reached with probability 1. If 
there are multiple absorbing states, the state that is entered is random, and we are interested in 
the absorbing probability 

aki = P(Xn eventually equals i | X0 = k), 
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i.e., the probability that state i is eventually reached, starting from state k. Note that aii = 1 
and aji = 0 for all absorbing j = i. For k a transient state, we have 

aki = P(∃n : Xn = i | X0 = k) 
N

= P(∃n : Xn = i | X1 = j)pkj 

j=1 

N

= ajipkj . 
j=1 

So we can find the absorption probabilities by solving the above system of linear equations. 

Example: Gambler’s Ruin A gambler wins 1 dollar at each round, with probability p, and 
loses a dollar with probability 1 − p. Different rounds are independent. The gambler plays 
continuously until he either accumulates a target amount m or loses all his money. What is the 
probability of losing his fortune? 

We construct a Markov chain with state space {0, 1, . . . ,m}, where the state i is the amount 
of money the gambler has. So state i = 0 corresponds to losing his entire fortune, and state 
m corresponds to accumulating the target amount. The states 0 and m are absorbing states. 
We have the transition probabilities pi,i+1 = p, pi,i−1 = 1 − p for i = 1, 2, . . . ,m − 1, and 
p00 = pmm = 1. To find the absorbing probabilities for the state 0, we have 

a00 = 1, 

am0 = 0, 

ai0 = (1 − p)ai−1,0 + pai+1,0, for i = 1, . . . ,m − 1. 

Let bi = ai0 − ai+1,0, ρ = (1 − p)/p, then the above equation gives us 

(1 − p)(ai−1,0 − ai0) = p(ai0 − ai+1,0) 

bi = ρbi−1 

so we obtain bi = ρib0. Note that b0 +b1 + +bm−1 = a00 −am0 = 1, hence (1+ρ+. . .+ρm−1)b0 = · · ·
1, which gives us 

ρi(1−ρ) , if ρ = 1,
bi = 1−ρm �

1 , otherwise. 
m 

Finally, ai,0 can be calculated. For ρ = 1, we have for � i = 1, . . . ,m − 1, 

ai0 = a00 − bi−1 − . . . − b0 

= 1 − (ρi−1 + . . . + ρ + 1)b0 

= 1 − 
1

1 
−
− 

ρ

ρ 

i 

1

1 
−
− 
ρ

ρ 
m 

ρi − ρm 

= 
1 − ρm 
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and for ρ = 1, 
m − i 

ai0 = . 
m 

This shows that for any fixed i, if ρ > 1, i.e., p < 1/2, the probability of losing goes to 1 as 
m →∞. Hence, it suggests that if the gambler aims for a large target while under unfavorable 
odds, financial ruin is almost certain. 

The expected time of absorption µk when starting in a transient state k can be defined as 
µk = E[min{n ≥ 1 : Xn is recurrent} | X0 = k]. A similar analysis by conditioning on the first 
step of the Markov chain shows that the expected time to absorption can be found by solving 

µk = 0 for all recurrent states k, 
N

µk = 1 + pkj µj for all transient states k. 
j=1 

25.3. References 

• Sections 6.4,6.6 [2]. 
• Section 5.5 [1]. 
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