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LECTURE 24 
Markov chains II. Mean recurrence times. 

24.1. Markov chains with a single recurrence class 

Recall the relations introduced in the previous lecture for the class of finite state Markov →, ↔
chains. Recall that we defined a state i to be recurrent if whenever i j we also have j i,→ →
namely i j. We have observed that is an equivalency relation, so that set of recurrent ↔ ↔
states is partitioned into equivalency classes R1, . . . , Rr. The remaining states T are transient. 

Lemma 24.1. For every ∀i ∈ R, j /∈ R we must have pi,j = 0. 

This means that once the chain is in some recurrent class R it stays there forever. 

Proof. The proof is simple: pi,j > 0 implies i j. Since i is recurrent then also j i implying 
j ∈ R - contradiction. 

→ → 
� 

Introduce the following basic random quantities. Given states i, j let 

Ti = min{n ≥ 1 : Xn = i|X0 = i}. 
In case no such n exists, we set Ti = ∞. (Thus the range of Ti is N ∪ {∞}.) The quantity is 
called the the first passage time. 

Lemma 24.2. For every state i ∈ T , P(Xn = i, i.o.) = 0. Namely, almost surely, after some 
finite time n0, the chain will never return to i. In addition E[Ti] = ∞ . 

Proof. By definition there exists a state j /∈ T such that i → j, j � i. It then follows that 
P(Ti = ∞) > 0 implying E[Ti] = ∞. Now, let us establish the first part. 

Let Ii,m be the indicator of the event that the M.c. returned to state i at least m times. 
Notice that P(Ii,1) = P(Ti < ∞) < 1. Also by M.c. property we have P(Ii,m|Ii,m−1) = P(Ti < 
∞), as conditioning that at some point the M.c. returned to state i m − 1 times does not 
impact its likelihood to return to this state again. Also notice Ii,m ⊂ Ii,m−1. Thus P(Ii,m) = 
P(Ii,m|Ii,m−1)P(Ii,m−1) = P(Ti < ∞)P(Ii,m−1) = · · · = Pm(Ti < ∞). Since P(Ti < ∞) < 1, then 
by continuity of probability property we obtain P(∩mIi,m) = limm→∞ P(Ii,m) = limm→∞ Pm(Ti < 
∞) = 0. Notice that the event ∩mIi,m is precisely the event Xn = i, i.o. � 

We now focus on the family of Markov chains with only one recurrent class. Namely X = 
T ∪ R. If in addition T = ∅, then such a M.c. is called irreducible. 

1 



�	 � 

� 

� � � 

� 

�� 

�

� � 

2 , FUNDAMENTALS OF PROBABILITY. 6.436/15.085 

Exercise 1. Show that T =� X . Namely, in every finite state M.c. there exists at least one 
recurrent state. 

Exercise 2. Let i ∈ T and let π be an arbitrary stationary distribution. Establish that πi = 0. 

Exercise 3. Suppose M.c. has one recurrent class R. Show that for every i ∈ R P(Xn = 
i, i.o.) = 1. Moreover, show that there exists 0 < q < 1 and C > 0 such that P(Ti > t) ≤ Cqt 

for all t ≥ 0. As a result, show that E[Ti] < ∞. 

Let µi = E[Ti], possibly with µi = ∞. This is called mean recurrence time of the state i. 

24.2. Uniqueness of the stationary distribution 

We now establish a fundamental result on M.c. with a single recurrence class. 

Theorem 24.3. A finite state M.c. with a single recurrence class has a unique stationary 
distribution π, which is given as πi = 

µ
1 
i 

for all states i. Specifically, πi > 0 iff the state i is 
recurrent. 

Proof. Let P be the transition matrix of the chain. We let the state space be X = {1, . . . , N}. 
We fix an arbitrary recurrent state k. We know that one exists by Exercise 1. Let Ni be the 
number of visits to state i between two successive visits to state k. In case i = k, the last visit 
is counted but the initial is not. Namely, in the special case i = k the number of visits is 1 
with probability one. and let ρi(k) = E[Ni]. Consider the event {Xn = i, Tk ≥ n} and consider 
the indicator function n≥1 IXn =i,Tk≥n = 1≤n≤Tk 

IXn =i. Notice that this sum is precisely Ni. 
Namely, 

(24.4)	 ρi(k) = P(Xn = i, Tk ≥ n|X0 = k). 
n≥1 

Then using the formula E[Z] = n≥1 P(Z ≥ n) for integer valued r.v., we obtain 

(24.5)	 ρi(k) = P(Tk ≥ n|X0 = k) = E[Tk] = µk. 
i n≥1 

Since k is recurrent, then by Exercise 3, µk < ∞ implying ρi(k) < ∞. We let ρ(k) denote the 
vector with components ρi(k). 

Lemma 24.6. ρ(k) satisfies ρT (k) = ρT (k)P . In particular, for every recurrent state k, πi = 
ρi(k) , 1 ≤ i ≤ N defines a stationary distribution. 
µk 

Proof. The second part follows from (24.5) and the fact that µk < ∞. Now we prove the first 
part. We have for every n ≥ 2 

(24.7)	 P(Xn = i, Tk ≥ n|X0 = k) = P(Xn = i, Xn−1 = j, Tk ≥ n|X0 = k) 
j=k 

(24.8)	 = P(Xn−1 = j, Tk ≥ n − 1|X0 = k)pj,i 

j=k 

Observe that P(X1 = i, Tk ≥ 1|X0 = k) = pk,i. We now sum the (24.7) over n and apply it to 
(24.4) to obtain 

ρi(k) = pk,i + P(Xn−1 = j, Tk ≥ n − 1|X0 = k)pj,i 

j=� k n≥2 
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We recognize n≥2 P(Xn−1 = j, Tk ≥ n − 1|X0 = k) as ρj (k). Using ρk(k) = 1 we obtain 

ρi(k) = ρk(k)pk,i + ρj (k)pj,i = ρj (k)pj,i 

j=k j 

which is in vector form precisely ρT (k) = ρT (k)P . � 

We now return to the proof of the theorem. Let π denote an arbitrary stationary distribution 
of our M.c. We know one exists by Lemma 24.6 and, independently by our linear programming 
based proof. By Exercise 2 we already know that πi = 1/µi = 0 for every transient state i. 

We now show that πk = 1/µk for every recurrent state k. Fix an arbitrary stationary 
distribution π. Assume that at time zero we start with distribution π. Namely P(X0 = i) = πi 

for all i. Of course this implies that P(Xn = i) is also πi for all n. On the other hand, fix any 
recurrent state k and consider 

µkπk = E[Tk|X0 = k]P(X0 = k) = P(Tk ≥ n|X0 = k)P(X0 = k) = P(Tk ≥ n, X0 = k) 
n≥1 n≥1 

On the other hand P(Tk ≥ 1, X0 = k) = P(X0 = k) and for n ≥ 2 

P(Tk ≥ n, X0 = k) = P(X0 = k,Xj =� k, 1 ≤ j ≤ n − 1) 

= P(Xj =� k, 1 ≤ j ≤ n − 1) − P(Xj =� k, 0 ≤ j ≤ n − 1) 
(∗) 
= P(Xj =� k, 0 ≤ j ≤ n − 2) − P(Xj =� k, 0 ≤ j ≤ n − 1) 

= an−2 − an−1, 

where an = P(Xj =� k, 0 ≤ j ≤ n) and (*) follows from stationarity of π. Now a0 = P(X0 =� k). 
Putting together, we obtain 

µkπk = P(X0 = k) + (an−2 − an−1) 
n≥2 

= P(X0 = k) + P(X0 = k) − lim an�
n 

= 1 − lim an 
n 

But by continuity of probabilities limn an = P(Xn �= k, ∀n). By Exercise 3, the state k, being 
recurrent is visited infinitely often with probability one. We conclude that limn an = 0, which 
gives µkπk = 1, implying that πk is uniquely defined as 1/µk. � 

24.3. Ergodic theorem 

Let Ni(t) denote the number of times the state i is visited during the times 0, 1, . . . , t. What can 
be said about the behavior of Ni(t)/t when t is large? The answer turns out to be very simple: 
it is πi. These type of results are called ergodic properties, as they show how the time average 
of the system, namely Ni(t)/t relates to the spatial average, namely πi. 

Theorem 24.9. For arbitrary starting state X0 = k and for every state i, limt→∞ 
Ni

t 
(t) = πi 

almost surely. Also limt→∞ 
E[Ni(t)] = πi. t 

Proof. Suppose X0 = k. If i is a transient state, then, as we have established, almost surely 
after some finite time, the chain will never enter i, meaning limt Ni(t)/t = 0 almost surely. Since 
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also πi = 0, then we have established the required equality for the case when i is a transient 
state. 

Suppose now i is a recurrent state. Let T1, T2, T3, . . . denote the time of successive visits to 
i. Then the sequence Tn, n ≥ 2 is i.i.d. Also T1 is independent from the rest of the sequence, 
although it distribution is different from the one of Tm, m ≥ 2 since we have started the chain 
from k which is in general different from i. By the definition of Ni(t) we have 

Tm ≤ t < Tm 

1≤m≤Ni(t) 1≤m≤Ni(t)+1 

from which we obtain 

1≤m≤Ni(t) Tm t 1≤m≤Ni(t)+1 Tm Ni(t) + 1 
(24.10) 

Ni(t) 
≤ 

Ni(t) 
<

Ni(t) + 1 Ni(t) 
. 

We know from Exercise 3 that E[Tm] < ∞, m ≥ 2. Using a similar approach it can be shown 
that E[T1] < ∞, in particular T1 < ∞ a.s. Applying SLLN we have that almost surely 

lim 2≤m≤n Tm 
= lim 2≤m≤n Tm n − 1

= E[T2] 
n nn→∞ n→∞ n − 1 

which further implies 

lim 1≤m≤n Tm 
= lim 2≤m≤n Tm 

+ lim 
T1 

= E[T2] 
n→∞ n n→∞ n n→∞ n 

almost surely. � 

Since i is a recurrent state then by Exercise 3, Ni(t) →∞ almost surely as t →∞. Combining 
the preceding identity with (24.10) we obtain 

t 
lim = E[T2] = µi, 
t→∞ Ni(t) 

from which we obtain limt Ni(t)/t = µ−i 
1 = πi almost surely. 

To establish the convergence in expectation, notice that Ni(t) ≤ t almost surely, implying 
Ni(t)/t ≤ 1. Applying bounded convergence theorem, we obtain that limt E[Ni(t)]/t = πi, and 
the proof is complete. 

24.4. Markov chains with multiple recurrence classes 

How does the theory extend to the case when the M.c. has several recurrence classes R1, . . . , Rr? 
The summary of the theory is as follows (the proofs are very similar to the case of single recurrent 
class case and is omitted). It turns out that such a M.c. chain possesses r stationary distributions 
πi = (π1

i , . . . , πi ), 1 ≤ i ≤ r, each ”concentrating” on the class Ri. Namely for each i and each N 
state k ∈/ Ri we have πk

i = 0. The i-th stationary distribution is described by πk
i = 1/µk for 

all k ∈ Ri and where µk is the mean return time from state k ∈ Rj into itself. Intuitively, the 
stationary distribution πi corresponds to the case when the M.c. ”lives” entirely in the class 
Ri. One can prove that the family of all of the stationary distributions of such a M.c. can be 
obtained by taking all possible convex combinations of πi , 1 ≤ i ≤ r, but we omit the proof. 
(Show that a convex combination of stationary distributions is a stationary distribution). 
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24.5. References 

• Sections 6.3-6.4 [1]. 
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