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LECTURE 23 
Markov chains 

23.1. Introduction 
d

Recall a model we considered earlier: random walk. We have Xn = Be(p), i.i.d. Then Sn = 

1≤j≤n Xj was defined to be a simple random walk. One of its key property is that the distribu
tion of Sn+1 conditioned on the state Sn = x at n is independent from the past history, namely 
Sm, m ≤ n − 1. To see this formally, note 

P(Sn+1 = y|Sn = x, Sn−1 = z1, . . . , S1 = zn−1) 

P(Xn+1 = y − x, Sn = x, Sn−1 = z1, . . . , S1 = zn−1) 
= 

P(Sn = x, Sn−1 = z1, . . . , S1 = zn−1) 
P(Xn+1 = y − x)P(Sn = x, Sn−1 = z1, . . . , S1 = zn−1) 

= 
P(Sn = x, Sn−1 = z1, . . . , S1 = zn−1) 

= P(Xn+1 = y − x), 

where the second equality follows from the independence assumption for the sequence Xn, n ≥ 1. 
A similar derivation gives P(Sn+1 = y|Sn = x) = P(Xn+1 = y − x) and we get the required 
equality: P(Sn+1 = y|Sn = x, Sn−1 = z1, . . . , S1 = zn−1) = P(Sn+1 = y|Sn = x). 

Definition 23.1. A discrete time stochastic process (Xn, n ≥ 1) is defined to be a Markov chain 
if it takes values in some countable set X , and for every x1, x2, . . . , xn ∈ X it satisfies the property 

P(Xn = xn|Xn−1 = xn−1, Xn−2 = xn−2, . . . , X1 = x1) = P(Xn = xn|Xn−1 = xn−1) 

The elements of X are called states. We say that the Markov chain is in state s ∈ X at time 
n if Xn = s. Mostly we will consider the case when X is finite. In this case we call Xn a finite 
state Markov chain and, without the loss of generality, we will assume that X = {1, 2, . . . , n}. 

Let us establish some properties of Markov chains. 

Proposition 1. Given a Markov chain Xn, n ≥ 1. 

(a) For every collection of states s, x1, x2, . . . , xn−1 and every m 

P(Xn+m = s|Xn−1 = xn−1, . . . , X1 = x1) = P(Xn+m = s|Xn−1 = xn−1). 
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(b) For every collection of states x1, x2, . . . , xn and k = 1, 2 . . . , n 

P(Xn = xn, Xn−1 = xn−1, . . . , X1 = x1|Xk = xk) 

= P(Xn = xn, Xn−1 = xn−1, . . . , Xk+1 = xk+1|Xk = xk)P(Xk−1 = xk−1, . . . X1 = x1|Xk = xk). 

Proof. Exercise. � 

23.2. Examples 

We already have an example of a Markov chain - random walk. 
Consider now the following example (Exercise 2, Section 6.1 [2]). Suppose we roll a die 

repeatedly and Xn is the number of 6-s we have seen so far. Then Xn is a Markov chain and 
P(Xn = x + 1|Xn−1 = x) = 1/6, P(Xn = x|Xn−1 = x) = 5/6 and P(Xn = y|Xn−1 = x) = 0 for all 
y = x, x + 1. Note, that we can think of Xn as a random walk, where the transition to the right 
occurs with probability 1/6 and the transition to the same state with the probability 5/6. 

Also, let Xn be the largest outcome seen so far. Then Xn is again a Markov chain. What are 
its transition probabilities? 

Now consider the following model of an inventory process. The inventory can hold finish 
goods up to capacity C ∈ N. Every month n there is some current inventory level In and a 
certain fixed amount of product x ∈ N is produced, as long as limit is not reached, namely 
In + x ≤ C. If In + x > C, than just enough C − In is produced to reach the capacity. Every 
month there is a random demand Dn, n ≥ 1, which we assume is i.i.d. If the current inventory 
level is at least as large as the demand, then the full demand is satisfied. Otherwise as much of 
the demand is satisfied as possible, bringing the inventory level down to zero. 

Let In be the inventory level in month n. Then In is a Markov chain. Note 

In+1 = min((In − Dn)+ + x, C). 

Specifically, the probability distribution of In+1 given In = i, is independent from the values 
Im, m ≤ n − 1. In is a Markov chain taking values in 0, 1, . . . , C. 

23.3. Homogeneous finite state Markov chain 

We say that the Markov chain Xn is homogeneous if P(Xn+1 = y|Xn = x) = P(X2 = y|X1 = x) 
for all n. Observe that all of our examples are homogeneous Markov chains. For a homogenous 
Markov chain Xn we can specify transition probabilities P(Xn+1 = y|Xn = x) by a sequence of 
values px,y = P(Xn+1 = y|Xn = x). For the case of finite state Markov chain, say the state space 
is {1, 2, . . . , N}. Then the transition probabilities are pi,j , 1 ≤ i, j ≤ N . We call P = (pi,j ) the 
transition matrix of Xn. The transition matrix P has the following obvious property j pi,j = 1 
for all i. Any non-negative matrix with such property is called stochastic matrix, for obvious 
reason. 
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Observe that � 
pi,j = P(Xn+2 = j|Xn = i) = P(Xn+2 = j|Xn+1 = k,Xn = i)P(Xn+1 = k|Xn = i) 

1≤k≤N 

= P(Xn+2 = j|Xn+1 = k)P(Xn+1 = k|Xn = i) 
1≤k≤N 

= pk,j pi,k. 
1≤k≤N 

This means that the matrix P 2 gives the two-step transition probabilities of the underlying 
Markov chain. Namely, the (i, j)-th entry of P 2, which we denote by p(2) 

is precisely P(Xn+2 = i,j 

j|Xn = i). This is not hard to extend to the general case: for every r ≥ 1, P r is the transition 
matrix of r-steps of the Markov chain. One of our goals is understanding the long-term dynamics 
of P r We will see that for a broad class of Markov chains the following property as r → ∞. 

(r)
happens: the limit limr→∞ p exists and depends on j only. Namely, the starting state i isi,j 
irrelevant, as far as the limit is concerned. This property is called mixing and is a very important 
property of Markov chains. 

Now, we use ej to denote the j-th N -dimensional column vector. Namely ej has j-th co
ordinate equal to one, and all the other coordinates equal to zero. We also let e denote the 
N -dimensional column vector consisting of ones. Suppose X0 = i, for some state i ∈ {1, . . . , N}. 
Then the probability vector of Xn can be written as eT

i P n in vector form. Suppose at time 
zero, the state of the chain is random and is given by some probability vector µ. Namely 
P(X0 = i) = µi, i = 1, 2, . . . , N . Then the probability vector of Xn is precisely µT P n in vector 
form. 

23.4. Stationary distribution 

Consider the following simple Markov chain on states 1, 2: p1,1 = p1,2 = 1/2, p2,1 = 1, p2,2 = 0. 
Suppose we start at random at time zero with the following probability distribution µ: µ1 = 
P(X0 = 1) = 2/3, µ2 = P(X0 = 2) = 1/3. What is the probability distribution of X1? We have 
P(X1 = 1) = (1/2)P(X0 = 1) + P(X0 = 2) = (1/2)(2/3) + (1/3) = 2/3. From this we find 
P(X1 = 2) = 1 − P(X1 = 1) = 1/3. We see that the probability distribution of X0 and X1 are 
identical. The same applies to every n. 

Definition 23.2. A probability vector π = (πi), 1 ≤ i ≤ N is defined to be a stationary 
distribution if P(Xn = i) = πi for all times n ≥ 1 and states i = 1, . . . , N , conditioned on 
P(X0 = i) = πi, 1 ≤ i ≤ N . In this case we also say that the Markov chain Xn is in steady-
state. 

Repeating the derivation above for the case of general Markov chains, it is not hard to see 
that the vector π is stationary iff it satisfies the following properties: πi ≥ 0, πi = 1 and i 

πi = pk,iπk, ∀i. 
1≤k≤N 

In vector form this can be written as 

(23.3) πT = πT P, 

where wT denotes the (row) transpose of a column vector w. 
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One of the fundamental properties of finite state Markov chains is that a stationary distri
bution always exists. 

Theorem 23.4. Given a finite state Markov chain with transition matrix P , the exists at least 
one stationary distribution π. Namely the system of equation (23.3) has at least one solution 
satisfying π ≥ 0, πi = 1.i 

Proof. There are many proofs of this fundamental results. One possibility is to use Brower’s 
Fixed Point Theorem. Later on we give a probabilistic proof which provides important intuition 
about the meaning of πi. For now let us give a quick proof, but one that relies on linear 
programming (LP). If you are not familiar with linear programming theory, you can simply 
ignore this proof. 

Consider the following LP problem in variables π1, . . . , πN . 

max πi 

1≤i≤N 

Subject to: 

P T π − π = 0, 

π ≥ 0. 

Note that a stationary vector π exists iff this LP has an unbounded optimal solution. Indeed, 
if π is a stationary vector, then it clearly is a feasible solution to this LP. Note that απ is also 
a solution for every α > 0. Since α 1≤i≤N πi = α, then we can obtain a feasible solution as 
large as we want. On the other hand, suppose this LP has an unbounded objective value. In 
particular, there exists a solution x satisfying i xi > 0. Taking πi = xi/ i xi we obtain a 
stationary distribution. 

Now using LP duality theory, this LP has an unbounded solution iff the dual solution is 
infeasible. The dual solution is 

min 0yi 

1≤i≤N 

Subject to: 

Py − y ≥ e. 

Let us show that indeed this dual LP problem is infeasible. Take any y and find k∗ such that 
yk∗ = maxi yi. Observe that i pk∗,iyi i pk∗,iyk∗ = yk∗ < 1 + yk∗ , since the rows of P sum≤
to one. Thus the constraint Py − y ≥ e is violated in the k∗-th row. We conclude that the 
dual problem is indeed infeasible. Thus the primal LP problem is unbounded and the stationary 
distribution exists. � 

As we mentioned, stationary distribution π is not necessarily unique, but it is quite often. In 
this case it can be obtained as a unique solution to the system of equations πT = πT P, j πj = 
1, πj ≥ 0. 

Example : [Example 6.6 from [1]] An absent-minded professor has two umbrellas, used when 
commuting from home to work and back. If it rains and umbrella is available, the professor takes 
it. If umbrella is not available, the professor gets wet. If it does not rain the professor does not 
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take the umbrella. It rains on a given commute with probability p, independently for all days. 
What is the steady-state probability that the professor will get wet on a given day? 

We model the process as a Markov chain with states j = 0, 1, 2. The state j means the 
location where the professor is currently in has j umbrellas. Then the corresponding transition 
probabilities are p0,2 = 1, p2,1 = p, p1,2 = p, p1,1 = 1−p, p2,0 = 1−p. The corresponding equations 
for πj , j = 0, 1, 2 are then π0 = π2(1 − p), π1 = (1 − p)π1 + pπ2, π2 = π0 + pπ1. From the second 
equation π1 = π2. Combining with the first equation and with the fact π0 + π1 + π2 = 1, we 

1 1−pobtain π1 = π2 = 
3−p , π0 = 

3−p . The steady-state probability that the professor gets wet is 
the probability of being in state zero times probability that it rains on this day. Namely it is 
P(wet) = (1

3
−
−
p
p 
)p . 

23.5. Classification of states. Recurrent and transient states 

Given a finite state homogeneous Markov chain with transition matrix P , construct a directed 
graph as follows: the nodes are i = 1, 2, . . . , N . Put edges (i, j) for every pair of states such 
that pi,j > 0. Given two states i, j suppose there is a directed path from i to j. We say that 
i communicates with j and write i j. What is the probabilistic interpretation of this? It→ � (n)
means there is a positive probability of getting to state j starting from i. Formally n pi,j > 0. 
Suppose, there is a path from i to j, but not from j to i. This means that if the chain starting 
from i, got to j, then it will never return to i again. Since, there is a positive chance of going 
from i to j, intuitively, this will happen with probability one. Thus with probability one we will 
never return to i. We would like to formalize this intuition. 

Definition 23.5. A state i is called transient if there exists a state j such that i j, but j � i.→
Otherwise i is called recurrent. 

We write i j if they communicate to each other. Observe that i i. Also if i j then↔ ↔ ↔
j i and if i j and j k then i k. Thus i is equivalency relationship and we can ↔ ↔ ↔ ↔ ↔
partition all the recurrent states into equivalency classes R1, R2, . . . , Rr. Thus the entire states 
space {1, 2, . . . , N} can be partitioned as T ∪ R1 ∪ · · · ∪ Rr, where T is the (possibly empty) set 
of transient states. 

23.6. References 

• Sections 6.1-6.4 [2] 
• Chapter 6 [1] 
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