
#### Abstract

MASSACHUSETTS INSTITUTE OF TECHNOLOGY


## THE POISSON PROCESS CONTINUED

## Readings:

Posted excerpt from Chapter 6 of [BT, 2nd edition], as well as starred exercises therein.

## 1 MEMORYLESSNESS IN THE POISSON PROCESS

The Poisson process inherits the memorylessness properties of the Bernoulli process. In particular, if we start watching a Poisson process at some time $t^{*}$, or at some causally determined random time $S$, the process we will see is a Poisson process in its own right, and is independent from the past. This is an intuitive consequence of the close relation of the Poisson and Bernoulli processes. We will give a more precise statement below, but we will not provide a formal proof. Nevertheless, we will use these properties freely in the sequel.

We first introduce a suitable definition of the notion of a stopping time. A nonnegative random variable $S$ is called a stopping time if for every $s \geq 0$, the occurrence or not of the event $\{S \leq s\}$ can be determined from knowledge of the values of the random variables $N(t), t \leq s .{ }^{1}$
Example: The first arrival time $T_{1}$ is a stopping time. To see this, note that the event $\left\{T_{1} \leq s\right\}$ can be written as $\{N(s) \geq 1\}$; the occurrence of the latter event can be determined from knowledge of the value of the random variable $N(s)$.

The arrival process $\{M(t)\}$ seen by an observer who starts watching at a stopping time $S$ is defined by $M(t)=N(S+t)-N(S)$. If $S$ is a stopping time, this new process is a Poisson process (with the same parameter $\lambda$ ). Furthermore, the collection of random variables $\{M(t) \mid t \geq 0\}$ (the "future" after $S$ ) is independent from the collection of random variables $\{N(\min \{t, S\}) \mid t \geq 0\}$ (the "past" until $S$ ).

[^0]MIT OpenCourseWare
http://ocw.mit.edu

### 6.436J / 15.085J Fundamentals of Probability

Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.


[^0]:    ${ }^{1}$ In a more formal definition, we first define the $\sigma$-field $\mathcal{F}_{s}$ generated by all events of the form $\{N(t)=k\}$, as $t$ ranges over $[0, s]$ and $k$ ranges over the integers. We then require that $\{S \leq s\} \in \mathcal{F}_{s}$, for all $s \geq 0$.

