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We now turn to the study of some simple classes of stochastic processes. Exam
ples and a more leisurely discussion of this material can be found in the corre
sponding chapter of [BT]. 

A discrete-time stochastic is a sequence of random variables {Xn} defined 
on a common probability space (Ω, F , P). In more detail, a stochastic process is 
a function X of two variables n and ω. For every n, the function ω �→ Xn(ω) is a 
random variable (a measurable function). An alternative perspective is provided 
by fixing some ω ∈ Ω and viewing Xn(ω) as a function of n (a “time function,” 
or “sample path,” or “trajectory”). 

A continuous-time stochastic process is defined similarly, as a collection of 
random variables {Xn} defined on a common probability space (Ω, F , P). 

THE BERNOULLI PROCESS 

In the Bernoulli process, the random variables Xn are i.i.d. Bernoulli, with com
mon parameter p ∈ (0, 1). The natural sample space in this case is Ω = {0, 1}∞. 

Let Sn = X1 + +Xn (the number of “successes” or “arrivals” in n steps).· · ·
The random variable Sn is binomial, with parameters n and p, so that 

pSn (k) = 
n

p k(1 − p)n−k , k = 0, 1 . . . , n, 
k 

E[Sn] = np, var(Sn) = np(1 − p). 
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Let T1 be the time of the first success. Formally, T1 = min{n | Xn = 1}. 
We already know that T1 is geometric: 

1 
pT1 (k) = (1 − p)k−1 p, k = 1, 2, . . . ; E[T1] = . 

p 

1.1 Stationarity and memorylessness 

The Bernoulli process has a very special structure. The discussion below is 
meant to capture some of its special properties in an abstract manner. 

Consider a Bernoulli process {Xn}. Fix a particular positive integer m, and 
let Yn = Xm+n. Then, {Yn} is the process seen by an observer who starts 
watching the process {Xn} at time m + 1, as opposed to time 1. Clearly, the 
process {Yn} also involves a sequence of i.i.d. Bernoulli trials, with the same pa
rameter p. Hence, it is also a Bernoulli process, and has the same distribution as 
the process {Xn}. More precisely, for every k, the distribution of (Y1, . . . , Yk) 
is the same as the distribution of (X1, . . . , Xk). This property is called station
arity property. 

In fact a stronger property holds. Namely, even if we are given the values 
of X1, . . . , Xm, the distribution of the process {Yn} does not change. Formally, 
for any measurable set A ⊂ Ω, we have 

P((Xn+1, Xn+2, . . .) ∈ A | X1, . . . , Xn) = P((Xn+1, Xn+2, . . .) ∈ A) 
= P((X1, X2 . . . , . . .) ∈ A). 

We refer to the first equality as a memorylessness property. (The second in
equality above is just a restatement of the stationarity property.) 

1.2 Stopping times 

We just discussed a situation where we start “watching” the process at some time 
m +1, where m is an integer constant. We next consider the case where we start 
watching the process at some random time N + 1. So, let N be a nonnegative 
integer random variable. Is the process {Yn} defined by Yn = XN+n a Bernoulli 
process with the same parameter? In general, this is not the case. For example, 
if N = min{n | Xn+1 = 1}, then P(Y1 = 1) = P(XN+1 = 1) = 1 =� p. This 
inequality is due to the fact that we chose the special time N by “looking into 
the future” of the process; that was determined by the future value Xn+1. 

This motivates us to consider random variables N that are determined causally, 
by looking only into the past and present of the process. Formally, a nonneg
ative random variable N is called a stopping time if, for every n, the occur
rence or not of the event {N = n} is completely determined by the values of 
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X1, . . . , Xn. Even more formally, for every n, there exists a function hn such 
that 

I{N=n} = hn(X1, . . . , Xn). 

We are now a position to state a stronger version of the memorylessness 
property. If N is a stopping time, then for all n, we have 

P((XN+1, XN+2, . . .) ∈ A | N = n, X1, . . . , Xn) = P((Xn+1, Xn+2, . . .) ∈ A) 
= P((X1, X2 . . . , . . .) ∈ A). 

In words, the process seen if we start watching right after a stopping time is also 
Bernoulli with the same parameter p. 

1.3 Arrival and interarrival times 

For k ≥ 1, let Yk be the kth arrival time. Formally, Yk = min{n | Sn = k}. 
For convenience, we define Y0 = 0. The kth interarrival time is defined as 
Tk = Yk − Yk−1. 

We already mentioned that T1 is geometric. Note that T1 is a stopping time, 
so the process (XT1+1, XT1+2, . . .) is also a Bernoulli process. Note that the 
second interarrival time T2, in the original process is the first arrival time in 
this new process. This shows that T2 is also geometric. Furthermore, the new 
process is independent from (X1, . . . , XT1 ). Thus, T2 (a function of the new 
process) is independent from (X1, . . . , XT1 ). In particular, T2 is independent 
from T1. 

By repeating the above argument, we see that the interarrival times Tk are 
i.i.d. geometric. As a consequence, Yk is the sum of k i.i.d. geometric random 
variables, and its PMF can be found by repeated convolution. In fact, a simpler 
derivation is possible. We have 

P(Yk = t) = P(St−1 = k − 1 and Xt = 1) = P(St−1 = k − 1) P(Xt = 1) � � � � 
·


= 
k

t −
− 

1
1 

p k−1(1 − p)t−k · p = 
k

t −
− 

1
1 

p k(1 − p)t−k .


The PMF of Yk is called a Pascal PMF. 

1.4 Merging and splitting of Bernoulli processes 

Suppose that {Xn} and {Yn} are independent Bernoulli processes with param
eters p and q, respectively. Consider a “merged” process {Zn} which records 
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an arrival at time n if and only if one or both of the original processes record an 
arrival. Formally, 

Zn = max{Xn, Yn}. 

The random variables Zn are i.i.d. Bernoulli, with parameter 

P(Zn = 1) = 1 − P(Xn = 0, Yn = 0) = 1 − (1 − p)(1 − q) = p + q − pq. 

In particular, {Zn} is itself a Bernoulli process. 
“Splitting” is in some sense the reveIf there is an arrival at time n (i.e., 

Xn = 1), we flip an independent coin, with parameter q, and record an arrival 
of “type I” or “type II”, depending on the coin’s outcome. Let {Xn} and {Yn}
be the processes of arrivals of the two different types. Formally, let {Un} be 
a Bernoulli process with parameter q, independent from the original process 
{Zn}. We then let 

Xn = Zn · Un, Yn = Zn · (1 − Un). 

Note that the random variables Xn are i.i.d. Bernoulli, with parameter pq, so that 
{Xn} is a Bernoulli process with parameter pq. Similarly, {Yn} is a Bernoulli 
process with parameter p(1 − q). Note however that the two processes are de
pendent. In particular, P(Xn = 1 | Yn = 1) = 0 �= pq = P(Xn = 1). 

The Poisson process 

The Poisson process is best understood as a continuous-time analog of the Bernoulli 
process. The process starts at time zero, and involves a sequence of arrivals, at 
random times. It is described in terms of a collection of random variables N(t), 
for t ≥ 0, all defined on the same probability space, where N(0) = 0 andN(t), 
t > 0, represents the number of arrivals during the interval (0, t]. 

If we fix a particular outcome (sample path) ω, we obtain a time function 
whose value at time t is the realized value of N(t). This time function has dis
continuities (unit jumps) whenever an arrival occurs. Furthermore, this time 
function is right-continuous: formally, limt t N(τ) = N(t); intuitively, the ↓
value of N(t) incorporates the jump due to an arrival (if any) at time t. 

We introduce some notation, analogous to the one used for the Bernoulli 
process: 

Y0 = 0, Yk = min{t | N(t) = k}, Tk = Yk − Yk−1. 

We also let 
P (k; t) = P(N(t) = k). 
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The Poisson process, with parameter λ > 0, is defined implicitly by the 
following properties: 

(a) The numbers of arrivals in disjoint intervals are independent. Formally, 
if 0 < t1 < t2 < < tk, then the random variables N(t1), N(t2) −· · · 
N(t1), . . . , N(tk) − N(tk−1) are independent. This is an analog of the 
independence of trials in the Bernoulli process. 

(b) The distribution of the number of arrivals during an interval is determined 
by λ and the length of the interval. Formally, if t1 < t2, then 

P(N(t2) − N(t1) = k) = P(N(t2 − t1) = k) = P (k; t2 − t1). 

(c) There exist functions ok such that 

ok(δ)lim = 0, 
δ 0 δ↓

and 

P (0; δ) = 1 − λδ + o1(δ) 
P (1; δ) = λδ + o2(δ), 

∞

P (k; δ) = o3(δ), 
k=2 

for all δ > 0. 

The ok functions are meant to capture second and higher order terms in a Taylor 
series approximation. 

2.1 The distribution of N(t) 

Let us fix the parameter λ of the process, as well as some time t > 0. We wish 
to derive a closed form expression for P (k; t). We do this by dividing the time 
interval (0, t] into small intervals, using the assumption that the probability of 
two or more arrivals in a small interval is negligible, and then approximate the 
process by a Bernoulli process. 

Having fixed t > 0, let us choose a large integer n, and let δ = t/n. We 
partition the interval [0, t] into n “slots” of length δ. The probability of at least 
one arrival during a particular slot is 

λt 
p = 1 − P (0; δ) = λδ + o(δ) = + o(1/n), 

n 
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for some function o that satisfies o(δ)/δ 0.→
We fix k and define the following events: 

A: exactly k arrivals occur in (0, t]; 
B: exactly k slots have one or more arrivals; 
C: at least one of the slots has two or more arrivals. 

The events A and B coincide unless event C occurs. We have 

and, therefore, 

B ⊂ A ∪ C, A ⊂ B ∪ C, 

Note that 

P(B) − P(C) ≤ P(A) ≤ P(B) + P(C). 

P(C) ≤ n · o3(δ) = (t/δ) · o3(δ), 

which converges to zero, as n →∞ or, equivalently, δ → 0. Thus, P(A), which 
is the same as P (k; t) is equal to the limit of P(B), as we let n →∞. 

The number of slots that record an arrival is binomial, with parameters n 
and p = λt/n + o(1/n). Thus, using the binomial probabilities, � �k� �n 

��λt λt n−k 
P(B) = + o(1/n) 1 − + o(1/n) . 

k n n 

When we let n → ∞, essentially the same calculation as the one carried out in 
Lecture 6 shows that the right-hand side converges to the Poisson PMF, and 

P (k; t) = 
(λt)k 

e−λt . 
k! 

This establishes that N(t) is a Poisson random variable with parameter λt, and 
E[N(t)] = var(N(t)) = λt. 

2.2 The distribution of Tk 

In full analogy with the Bernoulli process, we will now argue that the interarrival 
times Tk are i.i.d. exponential random variables. 

2.2.1 First argument 

We have 
P(T1 > t) = P(N(t) = 0) = P (0; t) = e−λt . 
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We recognize this as an exponential CDF. Thus, 

fT1 (t) = λe−λt , t > 0. 

Let us now find the joint PDF of the first two interarrival times. We give a 
heuristic argument, in which we ignore the probability of two or more arrivals 
during a small interval and any o(δ) terms. Let t1 > 0, t2 > 0, and let δ be a 
small positive number, with δ < t2. We have 

P(t1 ≤ T1 ≤ t1 + δ, t2 ≤ T2 ≤ t2 + δ) 
≈ P (0; t1) P (1; δ) P (0; t2 − t1 − δ) P (1; δ)· · · 
= e−λt1 λδe−λ(t2−δ)λδ. 

We divide both sides by δ2, and take the limit as δ 0, to obtain ↓ 

fT1,T2 (t1, t2) = λe−λt1 λe−λt2 . t1, t2 > 0. 

This shows that T2 is independent of T1, and has the same exponential distribu
tion. This argument is easily generalized to argue that the random variables Tk 

are i.i.d. exponential, with common parameter λ. 

2.2.2 Second argument 

We will first find the joint PDF of Y1 and Y2. Suppose for simplicity that λ = 1. 
let us fix some s and t that satisfy 0 < s ≤ t. We have 

P(Y1 ≤ s, Y2 ≤ t) = P N(s) ≥ 1, N(t) ≥ 2 

= P(N(s) = 1)P(N(t) − N(s) ≥ 1) + P(N(s) ≥ 2) 
= se−s(1 − e−(t−s)) + (1 − e−s − se−s) 
= −se−t + 1 − e−s . 

Differentiating, we obtain 

∂2 

fY1,Y2 (s, t) = P(Y1 ≤ s, Y2 ≤ t) = e−t , 0 ≤ s ≤ t. 
∂t∂s 

We point out an interesting consequence: conditioned on Y2 = t, Y1 is 
uniform on (0, t); that is given the time of the second arrival, all possible times 
of the first arrival are “equally likely.” 

We now use the linear relations 

T1 = Y1, T2 = Y2 − Y1. 
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The determinant of the matrix involved in this linear transformation is equal to 1. 
Thus, the Jacobian formula yields 

fT1,T2 (t1, t2) = fY1,Y2 (t1, t1 + t2) = e−t1 e−t2 , 

confirming our earlier independence conclusion. Once more this approach can 
be generalized to deal with ore than two interarrival times, although the calcula
tions become more complicated 

2.2.3 Alternative definition of the Poisson process 

The characterization of the interarrival times leads to an alternative, but equiva
lent, way of describing the Poisson process. Start with a sequence of indepen
dent exponential random variables T1, T2,. . ., with common parameter λ, and 
record an arrival at times T1, T1 + T2, T1 + T2 + T3, etc. It can be verified 
that starting with this new definition, we can derive the properties postulated 
in our original definition. Furthermore, this new definition, being constructive, 
establishes that a process with the claimed properties does indeed exist. 

2.3 The distribution of Yk 

Since Yk is the sum of k i.i.d. exponential random variables, its PDF can be 
found by repeating convolution. 

A second, somewhat heuristic, derivation proceeds as follows. If we ignore 
the possibility of two arrivals during a small interval, We have 

λk−1 

P(y ≤ Yk ≤ y + δ) = P (k − 1; y)P (1; δ) = 
(k − 1)!

y k−1 e−λyλδ. 

We divide by δ, and take the limit as δ 0, to obtain ↓ 

fYk (y) = 
λk−1 

y k−1 e−λyλ, y > 0.
(k − 1)!

This is called a Gamma or Erlang distribution, with k degrees of freedom. 
For an alternative derivation that does not rely on approximation arguments, 

note that for a given y ≥ 0, the event {Yk ≤ y} is the same as the event 

number of arrivals in the interval [0, y] is at least k . 

Thus, the CDF of Yk is given by 

∞ k−1 k−1
e−λy 

FYk (y) = P 
� 
Yk ≤ y 

� 
= 

� 
P (n, y) = 1 − 

� 
P (n, y) = 1 − 

� (λy)
n

n

! 
. 

n=k n=0 n=0 
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The PDF of Yk can be obtained by differentiating the above expression, and 
moving the differentiation inside the summation (this can be justified). After 
some straightforward calculation we obtain the Erlang PDF formula 

d λkyk−1e−λy 

fYk (y) = FYk (y) = . 
dy (k − 1)! 
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