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1 USEFUL INEQUALITIES 

Markov inequality: If X is a nonnegative random variable, then P(X ≥ a) ≤
E[X]/a. 

Proof: Let I be the indicator function of the event {X ≥ a}. Then, aI ≤ X . 
Taking expectations of both sides, we obtain the claimed result. 

Chebyshev inequality: P |X − E[X]| ≥ � ≤ var(X)/�2 . 

Proof: Apply the Markov inequality, to the random variable |X − E[X]|2, and 
with a = �2 . 

2 THE WEAK LAW OF LARGE NUMBERS 

Intuitively, an expectation can be thought of as the average of the outcomes over 
an infinite repetition of the same experiment. If so, the observed average in a 
finite number of repetitions (which is called the sample mean) should approach 
the expectation, as the number of repetitions increases. This is a vague state
ment, which is made more precise by so-called laws of large numbers. 

1




� �

Theorem 1. (Weak law of large numbers) Let Xn be a sequence of i.i.d. 
random variables, and assume that E[|X1|] < ∞. Let Sn = X1 + · · · + Xn. 
Then, 

Sn i.p. E[X1]. 
n 

→ 

This is called the “weak law” in order to distinguish it from the “strong 
law” of large numbers, which asserts, under the same assumptions, that Xn 

a.s. →
E[X1]. Of course, since almost sure convergence implies convergence in proba
bility, the strong law implies the weak law. On the other hand, the weak law can 
be easier to prove, especially in the presence of additional assumptions. Indeed, 
in the special case where the Xi have mean µ and finite variance, Chebyshev’s 
inequality yields, for every � > 0, 

P 
� 

(Sn/n) − µ
� var(Sn/n) 

= 
var(X1) 

,| | ≥ � ≤ 
�2 n�2 

which converges to zero, as n →∞, thus establishing convergence in probabil
ity. 

Before we proceed to the proof for the general case, we note two important 
facts that we will use. 

(a) First-order Taylor series expansion. Let g : R R be a function that has →
a derivative at zero, denoted by d. Let h be a function that represents the 
error in a first order Taylor series approximation: 

g(�) = g(0) + d� + h(�). 

By the definition of the derivative, we have 

g(�) − g(0) d� + h(�) h(�)
d = lim = lim = d + lim . 

� 0 � � 0 � � 0 �→ → →

Thus, h(�)/� converges to zero, as � 0. A function h with this property →
is often written as o(�). This discussion also applies to complex-valued 
functions, by considering separately the real and imaginary parts. 

(b) A classical sequence. Recall the well known fact 

a n 
lim 1 + = e a , a ∈ R. (1) 

n→∞ n 

We note (without proof) that this fact remains true even when a is a complex 
number. Furthermore, with little additional work, it can be shown that if 

2 



� �{an} is a sequence of complex numbers that converges to a, then, 

lim 1 + 
an n 

= e a . 
n→∞ n 

Proof of Theorem 1: Let µ = E[X1]. Fix some t ∈ R. Using the assumption 
that the Xi are independent, and the fact that the derivative of φX1 at t = 0 
equals iµ, the characteristic function of Sn/n is of the form 

� � � � � µit �n 
φn(t) = E[e itX1/n] n = φX1 (t/n) n = 1 + + o(t/n) , 

n 

where the function o satisfies lim� 0 o(�)/� = 0. Therefore, →

lim φXn (t) = eiµt, ∀ t. 
n→∞ 

We recognize eiµt as the characteristic function associated with a random vari
able which is equal to µ, with probability one. 

Applying Theorem 3 from the previous lecture (continuity of inverse trans
forms), we conclude that Sn/n converges to µ, in distribution. Furthermore, 
as mentioned in the previous lecture, convergence in distribution to a constant 
implies convergence in probability. 

Remark: It turns out that the assumption E[|X1|] < ∞ can be relaxed, although 
not by much. Suppose that the distribution of X1 is symmetric around zero. It is 
known that Sn/n → 0, in probability, if and only if limn→∞ nP(|X1| > n) = 0. 
There exist distributions that satisfy this condition, while E[ X1 ] < ∞. On the 
other hand, it can be shown that any such distribution satisfies 

|
E[
|
|X1|1−�] < ∞, 

for every � > 0, so the condition limn→∞ nP(|X1| > n) = 0 is not much 
weaker than the assumption of a finite mean. 

3 THE CENTRAL LIMIT THEOREM 

Suppose that X1, X2, . . . are i.i.d. with common (and finite) mean µ and variance 
σ2. Let Sn = X1 + + Xn. The central limit theorem (CLT) asserts that · · · 

Sn − nµ 
σ
√

n 

converges in distribution to a standard normal random variable. For a discussion 
of the uses of the central limit theorem, see the handout from [BT] (pages 388
394). 

3 



�
 �
 �


�


���
 ���


Proof of the CLT: For simplicity, suppose that the random variables Xi have 
zero mean and unit variance. Finiteness of the first two moments of X1 implies 
that φX1 (t) is twice differentiable at zero. The first derivative is the mean (as
sumed zero), and the second derivative is −E[X2] (assumed equal to one), and 
we can write 

φX (t) = 1 − t2/2 + o(t2), 

where o(t2) indicates a function such that o(t2)/t2 0, as t 0. The charac
teristic function of Sn/

√
n is of the form 

→ → 

t2 �
φX (t/

√
n) n n 

=
 1 −
 + o(t
2/n) .

2n


For any fixed t, the limit as n →∞ is e−t2/2, which is the characteristic function 
φZ of a standard normal random variable Z. Since φSn/

√
n(t) φZ (t) for 

every t, we conclude that Sn/
√

n converges to Z, in distribution. 
→ 

The central limit theorem, as stated above, does not give any information on 
the PDF or PMF of Sn. However, some further refinements are possible, under 
some additional assumptions. We state, without proof, two such results. 

(a) Suppose that	 |φX1 (t)|r dt < ∞, for some positive integer r. Then, Sn is 
a continuous random variable for every n ≥ r, and the PDF fn of (Sn − 
µn)/(σ

√
n) converges pointwise to the standard normal PDF: 

lim fn(z) = √1
2π

e−z2/2 , ∀ z. 
n→∞ 

In fact, convergence is uniform over all z: 

lim
 sup

zn→∞ 

fn(z) −
 = 0.

1 

e−z2/2√
2π


(b) Suppose that Xi is a discrete random variable that takes values of the form 
a+kh, where a and h are constants, and k ranges over the integers. Suppose 
furthermore that X has zero mean and unit variance. Then, for any z of the 
form z = (na + kh)/

√
n (these are the possible values of Sn/

√
n), we have 

√
n 1 2/2lim P(Sn = z) = e−z . 

n→∞ h 2π 
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