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1 DEFINITIONS 

1.1 Almost sure convergence 

Definition 1. We say that Xn converges to X almost surely (a.s.), and write 
a.s.

Xn → X , if there is a (measurable) set A ⊂ Ω such that: 

(a) limn→∞ Xn(ω) = X(ω), for all ω ∈ A; 

(b) P(A) = 1. 

Note that for a.s. convergence to be relevant, all random variables need to 
be defined on the same probability space (one experiment). Furthermore, the 
different random variables Xn are generally highly dependent. 

Two common cases where a.s. convergence arises are the following. 

(a) The probabilistic experiment runs over time. To each time n, we associate 
a nonnegative random variable Zn (e.g., income on day n). Let Xn = 

n Zk be the income on the first n days. Let X = ∞ Zk be the k=1 k=1 
lifetime income. Note that X is well defined (as an extended real number) 
for every ω ∈ Ω, because of our assumption that Zk ≥ 0, and Xn 

a.s. 
X .→ 
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(b) The various random variables are defined as different functions of a sin
gle underlying random variable. More precisely, suppose that Y is a ran
dom variable, and let gn : R R be measurable functions. Let Xn = 
gn(Y ) [which really means, X

→ 
n(ω) = gn(Y (ω)), for all ω]. Suppose 

a.s.that limn→∞ gn(y) = g(y) for every y. Then, Xn → X . For exam
ple, let gn(y) = y + y2/n, which converges to g(y) = y. We then have 
Y + Y 2/n 

a.s. 
Y .→ 

When Xn 
a.s. 

X , we always have → 

φXn (t) → φX (t), ∀ t, 

by the dominated convergence theorem. On the other hand, the relation 

E[Xn] E[X]→ 

is not always true; sufficient conditions are provided by the monotone and dom
inated convergence theorems. For an example, where convergence of expecta
tions fails to hold, consider a random variable U which is uniform on [0, 1], and 
let: � 

n, if U ≤ 1/n,
Xn = 0, if U > 1/n. 

(1) 

We have 
lim E[Xn] = lim nP(U ≤ 1/n) = 1. 

n→∞ n→∞ 

On the other hand, for any outcome ω for which U(ω) > 0 (which happens with 
probability one), Xn(ω) converges to zero. Thus, Xn 

a.s. 0, but E[Xn] does not →
converge to zero. 

1.2 Convergence in distribution 

Definition 2. Let X and Xn, n ∈ N, be random variables with CDFs F and 
Fn, respectively. We say that the sequence Xn converges to X in distribu
tion, and write Xn 

d 
X , if → 

lim Fn(x) = F (x), 
n→∞ 

for every x ∈ R at which F is continuous. 
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(a) Recall that CDFs have discontinuities (“jumps”) only at the points that have 
positive probability mass. More precisely, F is continuous at x if and only 
if P(X = x) = 0. 

(b) Let Xn = 1/n, and X = 0, with probability 1. Note that FXn (0) = 
P(Xn ≤ 0) = 0, for every n, but FX (0) = 1. Still, because of the excep

tion in the above definition, we have Xn 
d 

X . More generally, if Xn = an→ 
dand X = a, with probability 1, and an a, then Xn X . Thus, conver→ →

gence in distribution is consistent with the definition of convergence of real 
numbers. This would not have been the case if the definition required the 
condition limn→∞ Fn(x) = F (x) to hold at every x. 

(c) Note that this definition just involves the marginal distributions of the ran
dom variables involved. These random variables may even be defined on 
different probability spaces. 

(d) Let Y be a continuous random variable whose PDF is symmetric around 0. 
Let Xn = (−1)nY . Then, every Xn has the same distribution, so, trivially, 
Xn converges to Y in distribution. However, for almost all ω, the sequence 
Xn(ω) does not converge. 

(e) If we are dealing with random variables whose distribution is in a parametric 
class, (e.g., if every Xn is exponential with parameter λn), and the parame
ters converge (e.g., if λn → λ > 0 and X is exponential with parameter λ), 
then we usually have convergence of Xn to X , in distribution. 

(f) It is possible for a sequence of discrete random variables to converge in dis
tribution to a continuous one. For example, if Yn is uniform on {1, . . . , n}
and Xn = Yn/n, then Xn converges in distribution to a random variable 
which is uniform on [0, 1]. 

(g) Similarly, it is possible for a sequence of continuous random variables to 
converge in distribution to a discrete one. For example if Xn is uniform 
on [0, 1/n], then Xn converges in distribution to a discrete random variable 
which is identically equal to zero. 

(h) If X and all Xn are continuous, convergence in distribution does not imply 
convergence of the corresponding PDFs. (Find an example, by emulating 
the example in (f).) 

(i) If X and all Xn are integer-valued, convergence in distribution turns out 
to be equivalent to convergence of the corresponding PMFs: pXn (k) → 
pX (k), for all k. 
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1.3 Convergence in probability


Definition 3. (a) We say that a sequence of random variables Xn (not neces
sarily defined on the same probability space) converges in probability to a 

i.p.
real number c, and write Xn c, if → 

lim P(|Xn − c| ≥ �) = 0, ∀ � > 0. 
n→∞ 

(b) Suppose that X and Xn, n ∈ N are all defined on the same probability 
space. We say that the sequence Xn converges to X , in probability, and 

i.p.
write Xn → X , if Xn − X converges to zero, in probability, i.e., 

lim P( ≥ �) = 0, ∀ � > 0. 
n→∞ 

|Xn − X| 

(a) When X in part (b) of the definition is deterministic, say equal to some 
constant c, then the two parts of the above definition are consistent with 
each other. 

i.p.
(b) The intuitive content of the statement Xn c is that in the limit as n in→

creases, almost all of the probability mass becomes concentrated in a small 
interval around c, no matter how small this interval is. On the other hand, 
for any fixed n, there can be a small probability mass outside this interval, 
with a slowly decaying tail. Such a tail can have a strong impact on expected 
values. For this reason, convergence in probability does not have any im
plications on expected values. See for instance the example in Eq. (1). We 

have Xn 
i.p. 

X , but E[Xn] does not converge to E[X].→ 

(c) If Xn 
i.p. 

X and Yn 
i.p. 

Y , and all random variables are defined on the same → → 

) 
i.p.

probability space, then (Xn + Yn (X + Y ). (Can you prove it?) → 

CONVERGENCE IN DISTRIBUTION 

The following result provides insights into the meaning of convergence in dis
tribution, by showing a close relation with almost sure convergence. 
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Theorem 1. Suppose that Xn 
d 

X . Then, there exists a probability space →
and random variables Y , Yn defined on that space with the following proper
ties: 

(a) For every n, the random variables Xn and Yn have the same CDF; similarly, 
X and Y have the same CDF. 

(b) Yn 
a.s. 

Y .→ 

For convergence in distribution, it makes no difference whether the random 
variables Xn are independent or not; they do not even need to be defined on the 
same probability space. On the other hand, almost sure convergence implies a 
strong form of dependence between the random variables involved. The idea in 
the preceding theorem is to preserve the marginal distributions, but introduce a 
particular form of dependence between the Xn, which then results in almost sure 
convergence. This dependence is introduced by generating random variables Yn 

and Y with the desired distributions, using a common random number generator, 
e.g., a single random variable U , uniformly distributed on [0, 1]. 

If we assume that all CDFs involved are continuous and strictly increasing, 
then we can let Yn = FX

−
n 

1(U), and Y = FX
−1(U). This guarantees the first 

condition in the theorem. It then follows that Yn 
a.s. 

Y , as discussed in item (b) →
in Section 1.1. For the case of more general CDFs, the argument is similar in 
spirit but takes more work; see [GS], p. 315. 

THE HIERARCHY OF CONVERGENCE CONCEPTS 

Theorem 2. We have 

[Xn 
a.s. 

X] [Xn 
i.p. 

X] [Xn 
d 

X] [φXn (t) φX (t), ∀ t].→ ⇒ → ⇒ → ⇒ → 

(The first two implications assume that all random variables be defined on 
the same probability space.) 

Proof: 

(a) [Xn 
a.s. 

X] [Xn 
i.p. 

X]:→ ⇒ →
We give a short proof, based on the DCT, but more elementary proofs are 
also possible. Fix some � > 0. Let 

Yn = �I{|Xn−X|≥�}. 
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If Xn 
a.s. 

X , then Yn 
a.s. 0. By the DCT, E[Yn] 0. On the other hand, → → → 

E[Yn] = �P Xn − X| ≥ � . � � i.p.
This implies that P |Xn − X| ≥ � → 0, and therefore, Xn → X . 

(b) [Xn 
i.p. 

X] [Xn 
d 

X]:→ ⇒ →
The proof is omitted; see, e.g., [GS]. 

(c) [Xn 
d 

X] (t)→ ⇒ [φXn → φX (t), ∀ t]: 
Suppose that Xn 

d 
X . Let Yn and Y be as in Theorem 1, so that Yn 

a.s. 
Y .→ →

Then, for any t ∈ R, 

lim φXn (t) = lim φYn (t) = lim E[e itYn ] = E[e itY ] = φY (t) = φX (t), 
n→∞ n→∞ n→∞ 

where we have made use of the facts Yn 
a.s. 

Y , eitYn a.s. 
eitY , and the → →

DCT. 

At this point, it is natural to ask whether the converses of the implications in 
Theorem 2 hold. For the first two, the answer is, in general, “no”, although we 
will also note some exceptions. 

3.1 Convergence almost surely versus in probability 

[Xn 
i.p. 

X] does not imply [Xn 
a.s. 

X]:→ →
Let Xn be equal to 1, with probability 1/n, and equal to zero otherwise. Suppose 

that the Xn are independent. We have Xn 
i.p. 

0. On the other hand, by the Borel→
Cantelli lemma, the event {Xn = 1, i.o} has probability 1. Thus, for almost all 
ω, the sequence Xn(ω) does not converge to zero. 

Nevertheless, a weaker form of the converse implication turns out to be true. 

If Xn 
i.p. 

X , then there exists an increasing (deterministic) sequence nk of→
integers, such that limk→∞ Xnk = X , a.s. (We omit the proof.) 

For an illustration of the last statement in action, consider the preceding 
counterexample. If we let nk = k2, then we note that P(Xnk =� 0) = 1/k2 , 
which is summable. By the Borel-Cantelli lemma, the event {Xnk =� 0} will 
occur for only finitely many k, with probability 1. Therefore, Xnk converges, 
a.s., to the zero random variable. 
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3.2 Convergence in probability versus in distribution 

The converse turns out to be false in general, but true when the limit is deter
ministic. 
[Xn 

d 
X] does not imply [Xn 

i.p. 
X]:→ →

Let the random variables X , Xn be i.i.d. and nonconstant random variables, in 
which case we have (trivially) Xn 

d 
X . Fix some �. Then, P(|Xn − X→ | ≥ �) 

is positive and the same for all n, which shows that Xn does not converge to X , 
in probability. 

[Xn 
d 

c] implies [Xn 
i.p. 

c]:→ →
The proof is omitted; see, e.g., [GS]. 

3.3 Convergence in distribution versus characteristic functions 

Finally, the converse of the last implication in Theorem 2 is always true. We 
know that equality of two characteristic functions implies equality of the corre
sponding distributions. It is then plausible to hope that “near-equality” of char
acteristic functions implies “near equality” of corresponding distributions. This 
would be essentially a statement that the mapping from characteristic functions 
to distributions is a continuous one. Even though such a result is plausible, its 
proof is beyond our scope. 

Theorem 3. Continuity of inverse transforms: Let X and Xn be random 
variables with given CDFs and corresponding characteristic functions. We 
have 

(t) d 
X].[φXn → φX (t), ∀ t] ⇒ [Xn → 

The preceding theorem involves two separate conditions: (i) the sequence 
of characteristic functions φXn converges (pointwise), and (ii) the limit is the 
characteristic function associated with some other random variable. If we are 
only given the first condition (pointwise convergence), how can we tell if the 
limit is indeed a legitimate characteristic function associated with some random 
variable? One way is to check for various properties that every legitimate char
acteristic function must possess. One such property is continuity: if t t∗,→
then (using dominated convergence), 

lim φX (t) = lim E[e itX ] = E[e it
∗X ] = φX (t∗). 

t t∗ t t∗ → →

It turns out that continuity at zero is all that needs to be checked. 
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Theorem 4. Continuity of inverse transforms: Let Xn be random vari
ables with characteristic functions φXn , and suppose that the limit φ(t) = 
limn→∞ φXn (t) exists for every t. Then, either 

(i) The function φ is discontinuous at zero (in this case Xn does not converge 
in distribution); or 

(ii) There exists a random variable X whose characteristic function is φ, and 
d

Xn X .→ 

To illustrate the two possibilities in Theorem 4, consider a sequence {Xn}, 
and assume that Xn is exponential with parameter λn, so that φXn (t) = λn/(λn−
it). 

(a) Suppose that λn converges to a positive number λ. Then, the sequence of 
characteristic functions φXn converges to the function φ defined by φ(t) = 
λ/(λ−it). We recognize this as the characteristic function of an exponential 
distribution with parameter λ. In particular, we conclude that Xn converges 
in distribution to an exponential random variable with parameter λ. 

(b) Suppose now that λn converges to zero. Then, 

lim φXn (t) = lim 
λn = lim 

λ 
=

1, if t = 0, 
n→∞ n→∞ λn − it λ↓0 λ − it 0, if t = 0� . 

Thus, the limit of the characteristic functions is discontinuous at t = 0, 
and Xn does not converge in distribution. Intuitively, this is because the 
distribution of Xn keeps spreading in a manner that does not yield a limiting 
distribution. 
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