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MOMENT GENERATING FUNCTIONS
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Moment generating functions, and their close relatives (probability gener
ating functions and characteristic functions) provide an alternative way of rep
resenting a probability distribution by means of a certain function of a single 
variable. 

These functions turn out to be useful in many different ways: 

(a) They provide an easy way of calculating the moments of a distribution. 

(b) They provide some powerful tools for addressing certain counting and 
combinatorial problems. 

(c) They provide an easy way of characterizing the distribution of the sum of 
independent random variables. 

(d) They provide tools for dealing with the distribution of the sum of a random 
number of independent random variables. 

(e) They play a central role in the study of branching processes. 

(f) They play a key role in large deviations theory, that is, in studying the 
asymptotics of tail probabilities of the form P(X ≥ c), when c is a large 
number. 

(g) They provide a bridge between complex analysis and probability, so that 
complex analysis methods can be brought to bear on probability problems. 

(h) They provide powerful tools for proving limit theorems, such as laws of 
large numbers and the central limit theorem. 
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1 MOMENT GENERATING FUNCTIONS 

1.1 Definition 

Definition 1. The moment generating function associated with a random 
variable X is a function MX : R → [0, ∞] defined by 

MX (s) = E[e sX ]. 

The domain DX of MX is defined as the set DX = {s | MX (s) < ∞}. 

If X is a discrete random variable, with PMF pX , then 

MX (s) = e sx pX (x). 
x 

If X is a continuous random variable with PDF fX , then 

MX (s) = e sxfX (x) dx. 

Note that this is essentially the same as the definition of the Laplace transform 
of a function fX , except that we are using s instead of −s in the exponent. 

1.2 The domain of the moment generating function 

Note that 0 ∈ DX , because MX (0) = E[e0X ] = 1. For a discrete random 
variable that takes only a finite number of different values, we have DX = R. 
For example, if X takes the values 1, 2, and 3, with probabilities 1/2, 1/3, and 
1/6, respectively, then 

1 1 1 
MX (s) = e s + e 2s + e 3s , (1)

2 3 6

which is finite for every s ∈ R. On the other hand, for the Cauchy distribution, 
fX (x) = 1/(π(1 + x2)), for all x, it is easily seen that MX (s) = ∞, for all 
s = 0. 

In general, DX is an interval (possibly infinite or semi-infinite) that contains 
zero. 

Exercise 1. Suppose that MX (s) < ∞ for some s > 0. Show that MX (t) < ∞ for all 
t ∈ [0, s]. Similarly, suppose that MX (s) < ∞ for some s < 0. Show that MX (t) < ∞
for all t ∈ [s, 0]. 
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Exercise 2. Suppose that 

log P(X > x)
lim sup � −ν < 0. 

x→∞ x 

Establish that MX (s) < ∞ for all s ∈ [0, ν). 

1.3 Inversion of transforms 

By inspection of the formula for MX (s) in Eq. (1), it is clear that the distribu
tion of X is readily determined. The various powers esx indicate the possible 
values of the random variable X , and the associated coefficients provide the 
corresponding probabilities. 

At the other extreme, if we are told that MX (s) = ∞ for every s = 0, this 
is certainly not enough information to determine the distribution of X . 

On this subject, there is the following fundamental result. It is intimately 
related to the inversion properties of Laplace transforms. Its proof requires so
phisticated analytical machinery and is omitted. 

Theorem 1. Inversion theorem 

(a) Suppose that MX (s) is finite for all s in an interval of the form [−a, a], 
where a is a positive number. Then, MX determines uniquely the CDF of 
the random variable X . 

(b) If MX (s) = MY (s) < ∞, for all s ∈ [−a, a], where a is a positive number, 
then the random variables X and Y have the same CDF. 

There are explicit formulas that allow us to recover the PMF or PDF of a ran
dom variable starting from the associated transform, but they are quite difficult 
to use (e.g., involving “contour integrals”). In practice, transforms are usually 
inverted by “pattern matching,” based on tables of known distribution-transform 
pairs. 

1.4 Moment generating properties 

There is a reason why MX is called a moment generating function. Let us con
sider the derivatives of MX at zero. Assuming for a moment we can interchange 
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the order of integration and differentiation, we obtain


dMX (s) = 
d 

E[e sX ] = E[XesX ] = E[X],

ds
 s=0 ds s=0 s=0 

dmMX (s) = 
dm 

E[e sX ] sX ]= E[Xm = E[Xm]e

dsm s=0 dsm s=0 s=0 

Thus, knowledge of the transform MX allows for an easy calculation of the 
moments of a random variable X . 

Justifying the interchange of the expectation and the differentiation does 
require some work. The steps are outlined in the following exercise. For sim
plicity, we restrict to the case of nonnegative random variables. 
Exercise 3. Suppose that X is a nonnegative random variable and that MX (s) < ∞
for all s ∈ (−∞, a], where a is a positive number. 

(a) Show that E[Xk] < ∞, for every k. 

(b) Show that E[XkesX ] < ∞, for every s < a. 

(c) Show that (ehX − 1)/h ≤ XehX . 

(d) Use the DCT to argue that 

E[ehX ] − 1e
E[X] = E lim 

hX − 1 
= lim . 

h 0 h h 0 h↓ ↓

1.5 The probability generating function 

For discrete random variables, the following probability generating function 
is sometimes useful. It is defined by 

gX (s) = E[s X ], 

with s usually restricted to positive values. It is of course closely related to the 
moment generating function in that, for s > 0, we have gX (s) = MX (log s). 
One difference is that when X is a positive random variable, we can define 
gX (s), as well as its derivatives, for s = 0. So, suppose that X has a PMF 
pX (m), for m = 1, . . .. Then, 

∞

gX (s) = s m pX (m), 
m=1 

resulting in 

= m! pX (m). 
dm 

gX (s)
dsm s=0 

(The interchange of the summation and the differentiation needs justification, 
but is indeed legitimate for small s.) Thus, we can use gX to easily recover the 
PMF pX , when X is a positive integer random variable. 
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1.6 Examples 
dExample : X = Exp(λ). Then, 

∞ λ , s < λ;
MX (s) = e sxλe−λx dx = λ−s 

0 ∞, otherwise. 

dExample : X = Ge(p) 

e p 

MX (s) = 
∞

e sm p(1 − p)m−1 1−(1

s

−p)es , e < 1/(1 − p);� s 

m=1 
∞, otherwise. 

In this case, we also find gX (s) = ps/(1 − (1 − p)s), s < 1/(1 − p) and 
gX (s) = ∞, otherwise. 

Example : X = 
d 

N(0, 1). Then, 

1 ∞ x2 

MX (s) = √
2π 

exp(sx) exp(− 
2

)dx 
−∞ � 

= 
exp(s2/2) ∞ 

exp(− 
x2 + 2sx − s2 

)dx √
2π 2−∞ 

= exp(s 2/2). 

1.7 Properties of moment generating functions 

We record some useful properties of moment generating functions. 

Theorem 2. 

(a) If Y = aX + b, then MY (s) = esbMX (as). 

(b) If X and Y are independent, then MX+Y (s) = MX (s)MY (s). 

(c) Let X and Y be independent random variables. Let Z be equal to X , with 
probability p, and equal to Y , with probability 1 − p. Then, 

MZ (s) = pMX (s) + (1 − p)MY (s). 

Proof: For part (a), we have 

MX (aX + b) = E[exp(saX + sb)] = exp(sb)E[exp(saX)] = exp(sb)MX (as). 
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For part (b), we have 

MX+Y (s) = E[exp(sX + sY )] = E[exp(sX)]E[exp(sY )] = MX (s)MY (s).


For part (c), by conditioning on the random choice between X and Y , we have


MZ (s) = E[e sZ ] = pE[e sX ] + (1 − p)E[e sY ] = pMX (s) + (1 − p)MY (s).


Example : (Normal random variables) 

(a) Let X be a standard normal random variable, and let Y = σX + µ, which we know 
to have a N (µ, σ2) distribution. We then find that MY (s) = exp(sµ + 12 s

2σ2). 

(b) Let X = 
d 

N(µ1, σ1
2) and Y = N(µ2, σ2

2). Then, � 1 � 
MX+Y (s) = exp( s(µ1 + µ2) + 

2 
s 2(σ1

2 + σ2
2) . 

Using the inversion property of transforms, we conclude that X + Y = 
d 

N (µ1 + 
µ2, σ1

2 + σ2
2), thus corroborating a result we first obtained using convolutions. 

2 SUM OF A RANDOM NUMBER OF INDEPENDENT RANDOM VARI
ABLES 

Let X1, X2, . . . be a sequence of i.i.d. random variables, with mean µ and vari
ance σ2. Let N be another independent random variable that takes nonnegative �Ninteger values. Let Y = i=1 Xi. Let us derive the mean, variance, and mo
ment generating function of Y . 

We have 

E[Y ] = E[E[Y | N ]] = E[Nµ] = E[N ]E[X]. 

Furthermore, using the law of total variance, 

var(Y ) = E var(Y | N) + var E[Y | N ] 

= E[Nσ2] + var(Nµ) 

= E[N ]σ2 + µ 2var(N). 

Finally, note that 

E[exp(sY ) | N = n] = Mn (s) = exp(n log MX (s)),X 
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implying that


∞

MY (s) = exp(n log MX (s))P(N = n) = MN (log MX (s)). 
n=1 

The reader is encouraged to take the derivative of the above expression, and 
evaluate it at s = 0, to recover the formula E[Y ] = E[N ]E[X]. 

Example : Suppose that each Xi is exponentially distributed, with parameter λ, and 
that N is geometrically distributed, with parameter p ∈ (0, 1). We find that 

MY (s) = 
elog MX (s)p 

= 
pλ/(λ − s)

= 
λp 

1 − elog MX (s)(1 − p) 1 − λ(1 − p)/(λ − s) λp − s 

which we recognize as a moment generating function of an exponential random variable 
with parameter λp. Using the inversion theorem, we conclude that Y is exponentially 
distributed. In view of the fact that the sum of a fixed number of exponential random 
variables is far from exponential, this result is rather surprising. An intuitive explanation 
will be provided later in terms of the Poisson process. 

3 TRANSFORMS ASSOCIATED WITH JOINT DISTRIBUTIONS 

If two random variables X and Y are described by some joint distribution (e.g., 
a joint PDF), then each one is associated with a transform MX (s) or MY (s). 
These are the transforms of the marginal distributions and do not convey infor
mation on the dependence between the two random variables. Such information 
is contained in a multivariate transform, which we now define. 

Consider n random variables X1, . . . , Xn related to the same experiment. 
Let s1, . . . , sn be real parameters. The associated multivariate transform is a 
function of these n parameters and is defined by 

MX1,...,Xn (s1, . . . , sn) = E e s1X1+···+snXn . 

The inversion property of transforms discussed earlier extends to the multi
variate case. That is, if Y1, . . . , Yn is another set of random variables and 
MX1,...,Xn (s1, . . . , sn), MY1,...,Yn (s1, . . . , sn) are the same functions of s1, . . . , sn, 
in a neighborhood of the origin, then the joint distribution of X1, . . . , Xn is the 
same as the joint distribution of Y1, . . . , Yn. 
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Example : 

(a) Consider two random variables X and Y . Their joint transform is 

MX,Y (s, t) = E[e sX e tY ] = E[e sX+tY ] = MZ (1), 

where Z = sX+tY . Thus, calculating a multivariate transform essentially amounts 
to calculating the univariate transform associated with a single random variable that 
is a linear combination of the original random variables. 

(b) If X and Y are independent, then MX,Y (s, t) = MX (s)MY (t). 
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