
� � 

� � 

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 
6.436J/15.085J Fall 2008 
Lecture 11 10/15/2008 

ABSTRACT INTEGRATION — I
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The material in these notes can be found in practically every textbook that 
includes basic measure theory, although the order with which various properties 
are proved can be somewhat different in different sources. 

1 PRELIMINARIES 

The objective of these notes is to define the integral g dµ [sometimes also 
denoted g(ω) dµ(ω)] of a measurable function g : Ω R, defined on a → 
measure space (Ω, F , µ). 

Special cases: 

(a) If (Ω, F , P) is a probability space and X : Ω R is measurable (i.e., →� 
an extended-valued random variable), the integral X dP is also denoted 
E[X], and is called the expectation of X . 

(b) If we are dealing with the measure space (R, B, λ), where B is the Borel 
σ-field and λ is the Borel measure, the integral g dλ is often denoted 
as g(x) dx, and is meant to be a generalization of the usual integral 
encountered in calculus. 
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The program: We will define the integral g dµ for progressively general 
classes of measurable functions g: 

(a) Finite nonnegative functions g that take finitely many values (“simple 
functions”). In this case, the integral is just a suitably weighted sum of 
the values of g. 

(b) Nonnegative functions g. Here, the integral will be defined by approxi
mating g from below by a sequence of simple functions. 

(c) General functions g. This is done by decomposing g in the form g = 
, where g+ and g are nonnegative functions, and letting g dµ =g+ −g− � − 

g+ dµ − g− dµ. 

We will be focusing on the integral over the entire set Ω. The integral over a 
(measurable) subset B of Ω will be defined by letting 

g dµ = (1B g) dµ. 
B 

Here 1B is the indicator function of the set g, so that 

(1Bg)(ω) = 
g(ω), if ω ∈ B, 

0, if ω /∈ B. 

Throughout, we will use the term “almost everywhere” to mean “for all ω 
outside a zero-measure subset of Ω.” For the special case of probability mea
sures, we will often use the alternative terminology “almost surely,” or “a.s.” for 
short. Thus, if X and Y are random variables, we have X = Y , a.s., if and only 
if P(X = Y ) = P {ω : X(ω) �= Y (ω)} = 0. 

In the sequel, an inequality g ≤ h between two functions will be interpreted 
as “g(ω) ≤ h(ω), for all ω.” Similarly, “g ≤ h, a.e.,” means that “g(ω) ≤ h(ω), 
for all ω outside a zero-measure set.” The notation “gn g” will mean that for ↑ 
every ω, the sequence gn(ω) is monotone nondecreasing and converges to g(ω). 
Finally, “gn g, a.e.,” will mean that the monotonic convergence of gn(ω) to↑ 
g(ω) holds for all ω outside a zero-measure set. 

2 THE MAIN RESULT 

Once the construction is carried out, integrals of nonnegative functions will al
ways be well-defined. For general functions, integrals will be left undefined 
only when an expression of the form ∞−∞ is encountered. 

The following properties will turn out to be true, whenever the integrals or 
expectations involved are well-defined. On the left, we show the general version; 
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on the right, we show the same property, specialized to the case of probability 
measures. In property 8, the convention 0 · ∞ will be in effect when needed. 

1. 1B dµ = µ(B)	 E[1B] = P(B) 

2. g ≥ 0 ⇒ g dµ ≥ 0	 X ≥ 0 ⇒ E[X] ≥ 0 

3. g = 0, a.e. g dµ = 0	 X = 0, a.s. E[X] = 0 ⇒	 ⇒ 

4. g ≤ h g dµ ≤ h dµ	 X ≤ Y E[X] ≤ E[Y ]⇒ � � 
⇒ 

4� g ≤ h, a.e. ⇒ � 
g dµ ≤ � 

h dµ X ≤ Y, a.s. ⇒ E[X] ≤ E[Y ] 

5. g = h, a.e. ⇒ � 
g dµ = h dµ X = Y, a.s. ⇒ E[X] = E[Y ] 

6. [g ≥ 0, a.e., and g dµ = 0] ⇒ g = 0, a.e. [X ≥ 0, a.s., and E[X] ≥ 0] ⇒ X = 0, a.s. 

7. (g + h) dµ = g dµ + h dµ E[X + Y ] = E[X] + E[Y ] 

8. (ag) dµ = a g dµ	 E[aX] = aE[X] 

9. 0 ≤ gn ↑ g gn dµ g dµ 0 ≤ Xn ↑ X, E[Xn] E[X]⇒ � 
↑ � 

⇒ ↑ 

9�. 0 ≤ gn ↑ g, a.e. ⇒� 
gn dµ ↑ g dµ 0 ≤ Xn ↑ X, � 

a.s. ⇒ E[Xn] ↑ E[X] 

10.	 g ≥ 0 ⇒ ν(B) = B g dµ is a measure [f ≥ 0 and � f dP = 1] 
ν(B) = f dP is a probability measure ⇒ B 

Property 9, and its generalization, property 9�, is known as the Monotone

Convergence Theorem (MCT), and is a cornerstone of integration theory.


3 THE RIEMANN INTEGRAL 

Before proceeding, it is worth understanding why the traditional integral en

countered in calculus is not adequate for our purposes. Let us recall the defini
� btion of the (Riemann) integral a g(x) dx. We subdivide the interval [a, b] using

a finite sequence σ = (x1, x2, . . . , xn) of points that satisfy a = x1 < x2 <


< xn = b, and define
· · · 

n−1 � � 
U(σ) = max g(x) (xi+1 − xi), 

xi≤x<xi+1 

· 
i=1 

n�−1 � � 
L(σ) = min g(x) (xi+1 − xi). 

xi≤x<xi+1 

· 
i=1 
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Thus, U(σ) and L(σ) are approximations of the “area under the curve g,” from � babove and from below, respectively. We say that the integral a g(x) dx is well-
defined, and equal to a constant c, if 

sup L(σ) = inf U(σ) = c. 
σ σ 

In this case, we also say that g is Riemann-integrable over [a, b]. Intuitively, we 
want the upper and lower approximants U(σ) and L(σ) to agree, in the limit of 
very fine subdivisions of the interval [a, b]. 

It is known that if g : R R is Riemann-integrable over every inter→
val [a, b], then g is continuous almost everywhere (i.e., there exists a set S of 
Lebesgue measure zero, such that g is continuous at every x ∈/ S). This is a 
severe limitation on the class of Riemann-integrable functions. 

Example. Let Q be the set of rational numbers in [0, 1]. Let g = 1Q. For any σ = 
(x1, x2, . . . , xn), and every i, the interval [xi, xi+1) contains a rational number, and 
also an irrational number. Thus, maxxi ≤x<xi+1 g(x) = 1 and minxi≤x<xi+1 g(x) = 0. 
It follows that U(σ) = 1 and L(σ) = 0, for all σ, and supσ L(σ) =� infσ U(σ). 
Therefore 1Q is not Riemann integrable. On the other hand if we consider a uniform 
distribution over [0, 1], and the binary random variable 1Q , we have P(1Q = 1) = 0, 
and we would like to be able to say that E[X] = 

[0,1] 1Q(x) dx = 0. This indicates 
that a different definition is in order. 

4 THE INTEGRAL OF A NONNEGATIVE SIMPLE FUNCTION 

A function g : Ω R is called simple if it is measurable, finite-value, and takes →
finitely many different values. In particular, a simple function can be written as 

k

g(ω) = ai1Ai (ω), ∀ ω, (1) 
i=1 

where k is a (finite) nonnegative integer, the coefficients ai are nonzero and 
finite, and the Ai are measurable sets. 

Note that a simple function can have several representations of the form 
(1). For example, 1[0,2] and 1[0,1] + 1(1,2] are two representations of the same 
function. For another example, note that 1[0,2] + 1[1,2] = 1[0,1) + 2 1[1,2].· 
On the other hand, if we require the ai to be distinct and the sets Ai to be 
disjoint, it is not hard to see that there is only one possible representation, which 
we will call the canonical representation. More concretely, in the canonical 
representation, we let {a1, . . . , ak} be the range of g, where the ai are distinct, 
and Ai = {ω | g(ω) = ai}. 
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Definition 1. If g is a simple function, of the form (1), its integral is defined 
by � k

g dµ = aiµ(Ai). 
i=1 

Before continuing, we need to make sure that Definition 1 is sound, in the 
following sense. If we consider two alternative representations of the same sim
ple function, we need to ensure that the resulting value of g dµ is the same. 
Technically, we need to show the following: 

k m k m

if ai1Ai = bi1Bi , then aiµ(Ai) = biµ(Bi). 
i=1 i=1 i=1 i=1 

This is left as an exercise for the reader. 

Example. We have 1[0,2] + 1[1,2] = 1[0,1) + 2 1[1,2]. The first representation leads · 
to µ([0, 2]) + µ([1, 2], the second to µ([0, 1)) + 2µ([1, 2]). Using the fact µ([0, 2]) = 
µ([0, 1)) + µ([1, 2]) (finite additivity), we see that the two values are indeed equal. 

For the case where the underlying measure is a probability measure P, a 
simple function X : Ω R is called a simple random variable, and its integral � →

X dP is also denoted as E[X]. We then have 

k

E[X] = aiP(Ai). 
i=1 

If the coefficients ai are distinct, equal to the possible values of X , and by taking 
Ai = {ω | X(ω) = ai}, we obtain 

k k

E[X] = aiP({ω | X(ω) = ai}) = aiP(X = ai), 
i=1 i=1 

which agrees with the elementary definition of E[X] for discrete random vari
ables. 

Note, for future reference, that the sum or difference of two simple functions 
is also simple. 

4.1 Verification of various properties for the case of simple functions 

For the various properties listed in Section 2, we will use the shorthand “property 
S-A” and “property N-A”, to refer to “property A for the special case of simple 
functions” and “property A for nonnegative measurable functions,” respectively. 
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We note a few immediate consequences of the definition. For any B ∈ F , 
The function 1B is simple and 1B dµ = µ(B), which verifies property 1. In 
particular, when Q is the set of rational numbers and µ is Lebesgue measure, 
we have 1Q dµ = µ(Q) = 0, as desired. Note that a nonnegative simple 
function has a representation of the form (1) with all ai positive. It follows that 

g dµ ≥ 0, which verifies property S-2. 
Suppose now that a simple function satisfies g = 0, a.e. Then, it has a 

canonical representation of the form g = 
�k , where µ(Ai) = 0, for � i=1 ai1Ai 

every i. Definition 1 implies that g dµ = 0, which verifies property S-3. 
Let us now verify the linearity property S-7. Let g and h be nonnegative 

simple functions. Using canonical representations, we can write 

k m

g = ai1Ai , h = bj 1Bj , 
i=1 j=1 

where the sets Ai are disjoint, and the sets Bj are also disjoint. Then, the sets 
Ai ∩ Bj are disjoint, and 

k m

g + h = (ai + bj )1Ai∩Bj . 
i=1 j=1 

Therefore, � k m

(g + h) dµ = (ai + bj )µ(Ai ∩ Bj )

i=1 j=1


k m m k

= ai µ(Ai ∩ Bj ) + bj µ(Ai ∩ Bj ) 
i=1 j=1 j=1 i=1 

k m

= aiµ(Ai) + bj µ(Bj ) 
i=1 j=1 

= g dµ + h dµ. 

(The first and fourth equalities follow from Definition 1. The third equality made 
use of finite additivity for µ.) 

Property S-8 is an immediate consequence of Definition 1. We only need 
to be careful for the case where g dµ = ∞ and a = 0. Using the convention 
0 · ∞, we see that ag = 0, so that (ag) dµ = 0 = 0 · ∞ = a g dµ, and the 
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property indeed holds. By combining properties S-7 and S-8, with a = −1 we 
see that, for simple functions g and h we have (g − h) dµ = g dµ − h dµ. 

We now verify property S-4�, which also implies property S-4 as a special 
case. Suppose that g ≤ h, a.e. We then have h = g + q, for a simple function q 
such that q ≥ 0, a.e. In particular, q = q−q−, where q+ ≥ 0, q− ≥ 0, and q− = 
0, a.e. Thus, h = g + q−q−. Note that q, q+, and q− are all simple functions. 
Using the linearity property S-7and then properties S-3, S-2, we obtain 

h dµ = g dµ + q+ dµ − q− dµ = g dµ + q+ dµ ≥ g dµ. 

We next verify property S-5. If g = h, a.e., then we have both g ≤ h, a.e., 
and h ≤ g, a.e. Thus, g dµ ≤ h dµ, and g dµ ≥ h dµ, which implies 
that g dµ = h dµ. � 

We finally verify property S-6. Suppose that g ≥ 0, a.e., and g dµ = 0. 
We write g = g+ − g−, where g+ ≥ 0 and g− ≥ 0. Then, g = 0, a.e., and � � � − � 

g− dµ = 0. Thus, using property S-7, g+ dµ = g dµ + g− dµ = 0. 
Note that g+ is simple. Hence, its canonical representation is of the form g+ = �k

i=1 ai1Ai , with ai > 0. Since 
�k

i=1 aiµ(Ai) = 0, it follows that µ(Ai) = 0, 
for every i. From finite additivity, we conclude that µ(∪i

k 
=1Ai) = 0. Therefore, 

g+ = 0, a.e., and also g = 0, a.e. 

5 THE INTEGRAL OF A NONNEGATIVE FUNCTION 

The integral of a nonnegative function g will be defined by approximating g 
from below, using simple functions. 

Definition 2. For a measurable function g : Ω → [0, ∞], we let S(g) be the 
set of all nonnegative simple (hence automatically measurable) functions q 
that satisfy q ≤ g, and define 

g dµ = sup q dµ. 
q∈S(g) 

We will now verify that with this definition, properties N-2 to N-10 are all 
satisfied. This is easy for some (e.g., property N-2). Most of our effort will 
be devoted to establishing properties N-7 (linearity) and N-9 (monotone conver
gence theorem). 

The arguments that follow will make occasional use of the following conti
nuity property for monotonic sequences of measurable sets Bi: If Bi ↑ B, then 
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µ(Bi) µ(B). This property was established in the notes for Lecture 1, for the ↑
special case where µ is a probability measure, but the same proof applies to the 
general case. 

5.1 Verification of some easy properties 

Throughout this subsection, we assume that g is measurable and nonnegative. 

Property N-2: For every q ∈ S(g), we have q dµ ≥ 0 (property S-2). Thus, 
g dµ = supq∈S(g) q dµ ≥ 0. 

Property N-3: If g = 0, a.e, and 0 ≤ q ≤ g, then q = 0, a.e. Therefore, 
q dµ = 0 for every q ∈ S(g) (by property S-3), which implies that g dµ = 0. 

Property N-4: Suppose that 0 ≤ g ≤ h. Then, S(g) ⊂ S(h), which implies 
that � � � � 

g dµ = sup q dµ ≤ sup q dµ = h dµ. 
q∈S(g) q∈S(h) 

Property N-5: Suppose that g = h, a.e. Let A = {ω | g(ω) = h(ω)}, and 
note that the complement of A has zero measure, so that q = 1Aq, a.e., for any 
function q. Then, 

g dµ = sup q dµ = sup 1Aq dµ ≤ sup q dµ 
q∈S(g) q∈S(g) q∈S(1Ag) 

≤ sup q dµ = h dµ. 
q∈S(h) 

A symmetrical argument yields h, dµ ≤ g dµ. 

Exercise: Justify the above sequence of equalities and inequalities. 

Property N-4�: Suppose that g ≤ h, a.e. Then, there exists a function g� such 
that g� ≤ h and g = g�, a.e. Property N-5 yields g dµ = g� dµ. Property N-4 
yields g� dµ ≤ h dµ. These imply that g dµ ≤ h dµ. 

Property N-6: Suppose that g ≥ 0 but the relation g = 0, a.e., is not true. We 
will show that g dµ > 0. Let B = {ω | g(ω) > 0}. Then, µ(B) > 0. Let 
Bn = {ω | g(ω) > 1/n}. Then, Bn B and, therefore, µ(Bn) µ(B) > 0. 
This shows that for some n we have 

↑ 
µ(Bn) > 0. Note that g ≥

↑ 
(1/n)1Bn . 

Then, properties S-4, S-8, and 1 yield 

1 1 1 
g dµ ≥ 

n 
· 1Bn dµ = 

n 
1Bn dµ = 

n
µ(Bn) > 0. 
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Property N-8, when a ≥ 0: If a = 0, the result is immediate. Assume that 
a > 0. It is not hard to see that q ∈ S(g) if and only if aq ∈ S(ag). Thus, 

(ag) dµ = sup q dµ = sup (aq) dµ = sup (aq) dµ = a q dµ. 
q∈S(ag) aq∈S(ag) q∈S(g) 

5.2 Proof of the Monotone Convergence Theorem 

We first provide the proof of property 9, for the special case where g is equal to 
a simple function q, and then generalize. 

Let q be a nonnegative simple function, represented in the form q = 
�

i
k 
=1 ai1Ai , 

where the ai are finite positive numbers, and the sets Ai are measurable and 
disjoint. Let gn be a sequence of nonnegative measurable functions such that 
gn q. We distinguish between two different cases, depending on whether �	 ↑

q dµ is finite or infinite. 

(i) Suppose that	 q dµ = ∞. This implies that µ(Ai) = ∞ for some i. It 
follows that µ(Ai) = ∞ for some i. Fix such an i, and let 

Bn = {ω ∈ Ai | gn(ω) > ai/2}. 

For every ω ∈ Ai, there exists some n such that gn(ω) > ai/2. Therefore, 
Bn ↑ Ai. From the continuity of measures, we obtain µ(Bn) ↑ ∞. Now, 
note that gn ≥ (ai/2)1Bn . Then, using property N-4, we have 

gn dµ ≥ 
a

2 
i 
µ(Bn) ↑ ∞ = q dµ. 

(ii) Suppose now that	 q dµ < ∞. Then, µ(Ai) < ∞, for all i ∈ S. Let

A = ∪k

i=1Ai. By finite additivity, we have µ(A) < ∞. Let us fix a

positive integer r such that 1/r < a. Let


Bn = ω ∈ A | gn(ω) ≥ q(ω) − (1/r) . 

We observe that Bn ↑ A and, by continuity, µ(Bn) ↑ µ(A). Since µ(A) = 
µ(Bn) + µ(A \ Bn), and µ(A) < ∞, this also yields µ(A \ Bn) ↓ 0. 

Note that 1Aq = q, a.e. Using properties, S-5 and S-7, we have 

q dµ = 1Aq dµ = 1Bn q dµ + 1A\Bn q dµ. (2) 
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For ω ∈ Bn, we have gn(ω) + (1/r) ≥ q(ω). Thus, gn + (1/r)1Bn ≥
1Bn q. Using properties N-4 and S-7, together with Eq. (2), we have 

1 
gn dµ + 1Bn dµ ≥ 1Bn q dµ = q dµ − 1A\Bn q dµ 

r 

≥ q dµ − aµ(A \ Bn). 

By taking the limit as n →∞, we obtain 

1
lim gn dµ + µ(A) ≥ q dµ. 

n→∞ r 

Since this is true for every r > 1/a, we must have 

lim gn dµ ≥ q dµ. 
n→∞ 

On the other hand, we have gn ≤ q, so that gn dµ ≤ q dµ, and 
limn→∞ gn dµ ≤ q dµ. 

We now turn to the general case. We assume that 0 ≤ gn g. Suppose that 
q ∈ S(g), so that 0 ≤ q ≤ g. We have 

↑ 

0 ≤ min{gn, q} ↑ min{g, q} = q. 

Therefore, 

lim gn dµ ≥ lim min{gn, q} dµ = q dµ. 
n→∞ n→∞ 

(The inequality above uses property N-4; the equality relies on the fact that we 
already proved the MCT for the case where the limit function is simple.) By 
taking the supremum over q ∈ S(g), we obtain 

lim gn dµ ≥ sup q dµ = g dµ. 
n→∞ q∈S(g) 

On the other hand, we have gn ≤ g, so that dµ ≤ g dµ. Therefore,� � gn 

limn→∞ gn dµ ≤ g dµ, which concludes the proof of property N-9. 
To prove property 9�, suppose that gn g, a.e. Then, there exist functions ↑ 

gn
� and g�, such that gn = g�n, a.e., g = g�, a.e., and gn

� ↑ g�. By combining 
properties N-5 and N-9, we obtain 

lim gn dµ = lim gn
� dµ = g� dµ = g dµ. 

n→∞ n→∞ 
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5.3 Approximating g from below using “special” simple functions 

Let g be a nonnegative measurable function. From the definition of g dµ, 
it follows that there exists a sequence qn ∈ S(g) such that qn dµ → q dµ. 
This does not provide us with much information on the sequence qn. In contrast, 
the construction that follows provides us with a concrete way of approximating

g dµ.

For any positive integer r, we define a function gr : Ω R by letting
→ 

r, if g(ω) ≥ r

gr(ω) = i i i + 1


2r , if 
2r ≤ g(ω) < 

2r , i = 0, 1, . . . , r2r − 1 

In words, the function gr is a quantized version of g. For every ω, the value of 
g(ω) is first capped at r, and then rounded down to the nearest multiple of 2−r . 

We note a few properties of gr that are direct consequences of its definition. 
(a) For every r, the function gr is simple (and, in particular, measurable). 

(b) We have 0 ≤ gr ↑ g; that is, for every ω, we have gr(ω) ↑ g(ω). 

(c) If g is bounded above by c and r ≥ c, then |gr(ω) − g(ω)| ≤ 1/2r, for 
every ω. 

Statement (b) above gives us a transparent characterization of the set of mea
surable functions. Namely, a nonnegative function is measurable if and only if 
it is the monotonic and pointwise limit of simple functions. Furthermore, the 
MCT indicates that gr dµ g dµ, for this particular choice of simple func↑
tions gr. (In an alternative line of development of the subject, some texts start 
by defining g dµ as the limit of gr dµ.) 

5.4 Linearity 

We now prove linearity (property N-7). Let gr and hr be the approximants of 
g and h, respectively, defined in Section 5.3. Since gr g and hr h, we have ↑ ↑
(gr + hr) (g + h). Therefore, using the MCT and property S-7 (linearity for ↑
simple functions), 

(g + h) dµ = lim (gr + hr) dµ 
r→∞ � � � � 

= lim gr dµ + hr dµ 
r→∞ � � 

= lim gr dµ + lim hr dµ 
r�→∞ � 

r→∞ 

= g dµ + h dµ. 
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6 THE GENERAL CASE 

Consider now a measurable function g : Ω R. Let A+ = {ω | g(ω) > 0} and 
A = g(ω) < 0}; note that these are measurable sets. Let g+ = g− {ω | 

→
· 1A+ 

and g− = −1A− g; note that these are nonnegative measurable functions. We 
then have g = g+ − g−, and we define 

g dµ = g+ dµ − g− dµ. 

The integral g dµ is well-defined, as long as we do not have both g+ dµ and 
g− dµ equal to infinity. 

With this definition, verifying properties 3-8 is not too difficult, and there 
are no surprises. We decompose the functions g and h into negative and positive 
parts, and apply the properties already proved for the nonnegative case. The 
details are left as an exercise. 

In order to prove the last property (property 10) one uses countable additivity 
for the measure µ, a limiting argument based on the approximation of g by 
simple functions, and the MCT. The detailed proof is left as an exercise for the 
reader. 
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