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Given a random variable X with density fX , and a measurable function 
g, we are often interested in the distribution (CDF, PDF, or PMF) of the ran
dom variable Y = g(X). For the case of a discrete random variable X , this is 
straightforward: � 

pY (y) = pX (x). 
{x | g(x)=y} 

However, the case of continuous random variables is more complicated. Note 
that even if X is continuous, g(X) is not necessarily a continuous random vari
able, e.g., if the range of the function g is discrete. However, in many cases, Y 
is continuous and its PDF can be found by following a systematic procedure. 

FUNCTIONS OF A SINGLE RANDOM VARIABLE 

The principal method for deriving the PDF of g(X) is the following two-step 
approach. 
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Calculation of the PDF of a Function Y = g(X) of a Continuous Ran
dom Variable X 

(a) Calculate the CDF FY of Y using the formula 

FY (y) = P g(X) ≤ y = fX (x) dx. 
{x | g(x)≤y} 

(b) Differentiate to obtain the PDF of Y : 

dFY
fY (y) = (y). 

dy 

Example. Let Y = g(X) = X2, where X is a continuous random variable with known 
PDF. For any y > 0, we have 

FY (y) = P(Y ≤ y) 

= P(X2 ≤ y) 
= P(−√y ≤ X ≤ √

y) 
= FX (

√
y) − FX (−

√
y), 

and therefore, by differentiating and using the chain rule, 

fY (y) = 
2
√
1 
y
fX (

√
y) + 

2
√
1 
y
fX (−

√
y), y > 0. 

Example. Suppose that X is a nonnegative random variable and that Y = exp(X2). 
Note that FY (y) = 0 for y < 1. For y ≥ 1, we have 

FY (y) = P 
� 
e X

2 

≤ y 
� 

= P(X2 ≤ log y) = P(X ≤ 
� 

log y). 

By differentiating and using the chain rule, we obtain � 1 
fY (y) = fX ( log y) , y > 1.

2y
√

log y 

1.1 The case of monotonic functions 

The calculation in the last example can be generalized as follows. Assume that 
the range of the random variable X contains an open interval A. Suppose that 
g is strictly monotone (say increasing), and also differentiable on the interval 
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A. Let B the set of values of g(x), as x ranges over A. Let g−1 be the inverse 
function of g, so that g(g−1(y)) = y, for y ∈ B. Then, for y ∈ B, and using the 
chain rule in the last step, we have 

fY (y) = 
d 

P(g(X) ≤ y) = 
d 

P(X ≤ g−1(y)) = fX (g−1(y))
dg−1(y) 

. 
dy dy dy 

Recall from calculus that the derivative of an inverse function satisfies 

dg−1 1
(y) = ,

dy g�(g−1(y))

where g� is the derivative of g. Therefore, 

1 
fY (y) = fX (g−1(y)) . 

g�(g−1(y))

When g is strictly monotone decreasing, the only change is a minus sign in front 
of g�(g−1(y)). Thus, the two cases can be summarized in the single formula: 

1 
fY (y) = fX (g−1(y)) 

|g�(g−1(y))| 
, y ∈ B. (1) 

An easy mnemonic for remembering (and also understanding this formula) 
is 

fY (y) |dy| = fX (x) |dx|, 
where x and y are related by y = g(x), and since dy = |g�(x)| · |dx|, 

fY (y) |g�(x)| = fX (x). 

1.2 Linear functions 

Consider now the special case where g(x) = ax + b, i.e., Y = aX + b. We 
assume that a = 0� . Then, g�(x) = a and g−1(y) = (y − b)/a. We obtain 

1 � y − b� 
fY (y) = fX . 

|a| a 

Example. (A linear function of a normal random variable is normal) Suppose that 
X = 

d 
N(0, 1) and Y = aX + b. Then, 

1 (y−b)2 

fY (y) = e− 
2a2 ,√

2π|a| 
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so that Y is N(b, a2). More generally, if X = 
d 

N(µ, σ), then the same argument shows 
that Y = ax + b = 

d 
N(aµ + b, a2σ2). We conclude that a linear (more precisely, affine) 

function of a normal random variable is normal. 

2 MULTIVARIATE TRANSFORMATIONS 

Suppose now that X = (X1, . . . , Xn) is a vector of random variables that are 
jointly continuous, with joint PDF fX (x) = fX (x1, . . . , xn). Consider a func
tion g : Rn Rn, and the random vector Y = (Y1, . . . , Yn) = g(X). Let gi→
be the components of g, so that Yi = gi(X) = gi(X1, . . . , Xn). Suppose that 
the function g is continuously differentiable on some open set A ⊂ Rn . Let 
B = g(A) be the image of A under g. Assume that the inverse function g−1 is 
well-defined on B; that is, for every y ∈ B, there is a unique x ∈ Rn such that 
g(x) = y. 

The formula that we develop here is an extension of the formula fY (y) |g�(x)|
= fX (x) that we derived for the one-dimensional case, with the derivative g�(x) 
being replaced by a matrix of partial derivatives, and with the absolute value 
being replaced by the absolute value of the determinant. It can be justified by 
appealing to the change of variables theorem from multivariate calculus, but we 
provide here a more transparent argument. 

2.1 Linear functions 

Let us first assume that g is a linear function, of the form g(x) = Mx, for 
some n × n matrix M . Fix some x ∈ A and some δ > 0. Consider the cube 
C = [x, x + δ]n, and assume that δ is small enough so that C ⊂ A. The image 
D = {Mx | x ∈ C} of the cube C under the mapping g is a parallelepiped. 
Furthermore, the volume of D is known to be equal to |M | · δn, where we use 

to denote the absolute value of the determinant of a matrix. | · |
Having fixed x, let us also fix y = Mx. Assuming that fX (x) is continuous 

at x, we have 

P(X ∈ C) = fX (t) dt = fX (x)δn + o(δn) ≈ fX (x)δn , 
C 

where o(δn) stands for a function such that limδ 0 o(δn)/δn = 0, and where the ↓
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symbol ≈ indicates that the difference between the two sides is o(δn). Thus, 

fX (x) · δn	 ≈ P(X ∈ C) 
= P(g(X) ∈ g(C)) 
= P(Y ∈ D) 
≈ fY (y) · vol(D) 
= δn .fY (y) · |M | · 

Dividing by δn, and taking the limit as δ ↓ 0, we obtain fX (x) = fY (y) · |M |. 
Let us now assume that the matrix M is invertible, so that its determinant is 
nonzero. Using the relation y = Mx and the fact det(M−1) = 1/ det(M), 

fX (M−1y)	
M−1fY (y) = 

|M | 
= fX (M−1 y) · | |. 

Note that if M is not invertible, the random variable Y takes values in a 
proper subspace S of Rn. Then, Y is not jointly continuous (cannot be described 
by a joint PDF). On the other hand, if we restrict our attention to S, and since S 
is isomorphic to Rm for some m < n, we could describe the distribution of Y 
in terms of a joint PDF on Rm . 

2.2 The general case 

Let us now generalize to the case where g is continuously differentiable at x. 
We define M(x) as the Jacobian matrix (∂g/∂x)(x), with entries (∂gi/∂xj )(x). 
The image D = g(C) of the cube C is not a parallelepiped. However, from a 
first order Taylor series expansion, g is approximately linear in the vicinity of 
x. It can then be shown that the set D has volume |M(x)| · δn + o(δn). It then 
follows, as in the linear case, that 

fX (g−1(y))
fY (y) = 

|M(g−1(y))| 
= fX (g−1(y)) · |M−1(g−1(y))|. 

We note a useful fact from calculus that sometimes simplifies the application 
of the above formula. If we define J(y) as the Jacobian (the matrix of partial 
derivatives) of the mapping g−1(y), and if some particular x and y are related 
by y = g(x), then J(y) = M−1(x). Therefore, 
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fY (y) = fX (g−1(y)) · |J(y)|. (2) 

2.3 The bivariate normal in polar coordinates 

Let X and Y be independent standard normal random variables. Let g be 
the mapping that transforms Cartesian coordinates to polar coordinates, and let 
(R, Θ) = g(X, Y ). The mapping g is either undefined or discontinuous at 
(x, y) = (0, 0). So, strictly speaking, in order to apply the multivariate trans
formation formula (2), we should work with A = R2 \ {(0, 0)}. The inverse 
mapping g−1 is given by (x, y) = g−1(r, θ) = (r cos θ, r sin θ). Its Jacobian 
matrix is of the form � � 

cos θ sin θ 
−r sin θ r cos θ

, 

and therefore, |J(r, θ)| = r cos2 θ + r sin2 θ = r. From the multivariate trans
formation formula, we obtain 

fR,Θ(r, θ) = 
r

e−(r2 cos2 θ+r2 sin2 θ)/2 =
1 

re−r2/2 , r > 0.
2π 2π 

We observe that the joint PDF of R and Θ is of the form fR,Θ = fRfΘ, where 

fR(r) = re−r2/2 , 

and 
1 

fΘ(θ) = , θ = [0, 2π].
2π 

In particular, R and Θ are independent. The random variable R is said to have a 
Rayleigh distribution. 

We can also find the density of Z = R2 . For the mapping g defined by 
g(r) = r2, we have g−1(z) = 

√
z, and g�(r) = 2r, which leads to 1/g�(g−1(z)) = 

1/2
√

z. We conclude that 

fZ (z) = 
√

ze−z/2 

2
√1 

z 
= 

2
1 
e−z/2 , z > 0 

which we recognize as an exponential PDF with parameter 1/2. 
An interesting consequence of the above results is that in order to simulate 

normal random variables, it suffices to generate two independent random vari
ables, one uniform and one exponential. Furthermore, an exponential random 
variable is easy to generate using a nonlinear transformation of another indepen
dent uniform random variable. 
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3 A SINGLE FUNCTION OF MULTIPLE RANDOM VARIABLES 

Suppose that X = (X1, . . . , Xn) is a vector of jointly continuous random vari
ables with known PDF fX . Consider a function g1 : Rn R and the random →
variable Y1 = g1(X). Note that the formulas from Section 2 cannot be used 
directly. In order to find the PDF of Y , one possibility is to calculate the multi
dimensional integral 

FY (y) = P(g(X) ≤ y) = fX (x) dx, 
{x | g(x)≤y} 

and then differentiate. 
Another possibility is to introduce additional functions g2, . . . , gn : Rn →

R, and define Yi = gi(X), for i ≥ 2. As long as the resulting function g = 
(g1, . . . , gn) is invertible, we can appeal to our earlier formula to find the joint 
PDF of Y , and then integrate to find the marginal PDF of Y1. 

The simplest choice in the above described method is to let Yi = Xi, i =�
1, so that g(x) = (g1(x), x2, . . . , xn). Let h : Rn R be a function that →
corresponds to the first component of g−1. That is, if y = g(x), then x1 = h(y). 
Then, the inverse mapping g−1 is of the form 

g−1(y) = (h(y), y2, . . . , yn), 

and its Jacobian matrix is of the form ⎡
 ⎤
∂h (y) ∂h (y) ∂h (y)∂y1 ∂y2 ∂yn 
· · · 

0 1 0· · · 
. . . . . . . . . . . . 
0 0 1· · · 

⎢⎢⎢⎣


⎥⎥⎥⎦

J(y) =
 .


It follows that |J(y)| = | ∂h (y)|, and ∂y1 

(y)
∂h


fY (y) = fX (h(y), y2, . . . , yn) .

∂y1 

Integrating, we obtain


∂h

(y1) = fX (h(y), y2, . . . , yn) (y)
fY1 dy2 · · · dyn. 

∂y1 

Example. Let X1 and X2 be positive, jointly continuous, random variables, and sup
pose that we wish to derive the PDF of Y1 = g(X1, X2) = X1X2. We define Y2 = X2. 
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From the relation x1 = y1/x2 we see that h(y1, y2) = y1/y2. The partial derivative 
∂h/∂y1 is 1/y2. We obtain 

1 1 
fY1 (y1) = fX (y1/y2, y2) dy2 = fX (y1/x2, x2) dx2. 

y2 x2 

For a special case, suppose that X1, X2 = 
d 

U(0, 1) are independent. Their common 
PDF is fXi (xi) = 1, for xi ∈ [0, 1]. Note that fY1 (y1) = 0 for y /∈ (0, 1). Furthermore, 
fX1 (y1/x2) is positive (and equal to 1) only in the range x2 ≥ y1. Also fX2 (x2) is 
positive, and equal to 1, iff x2 ∈ (0, 1). In particular, 

fX (y1/x2, x2) = fX1 (y1/x2)fX2 (x2) = 1, for x2 ≥ y1. 

We then obtain � 1 1 
fY1 (y1) = dx2 = − log y, y1 ∈ (0, 1). 

x2y1 

The direct approach to this problem would first involve the calculation of FY1 (y1) = 
P(X1X2 ≤ y1). It is actually easier to calculate � 1 � 1 

1 − FY1 (y1) = P(X1X2 ≥ y1) = dx2 dx1 
y1 y1/x1 

= 1 − 
y1 

dx1 
x1y1 

= (x1 − y1 log x1)��1 
= (1 − y1) + y1 log y1. 

y1 

Thus, FY1 (y1) = y1 − y1 log y1. Differentiating, we find that fY1 (y1) = − log y1. 
An even easier solution for this particular problem (along the lines of the stick 

example in Lecture 9) is to realize that conditioned on X1 = x1, the random variable 
Y1 = X1X2 is uniform on [0, x1], and using the total probability theorem, � 1 � 1 1 

fY1 (y1) = fX1 (x1)fY1|X1 
(y1 | x1) dx1 = dx1 = − log y1. 

x1y1 y1 

MAXIMUM AND MINIMUM OF RANDOM VARIABLES 

Let X1, . . . , Xn be independent random variables, and let X(1) ≤ X(2) ≤ · · · ≤ 
X(1) denote the corresponding order statistics. Namely, X(1) = minj Xj , X(2) 

is the second smallest of the values X1, . . . , Xn, and X(n) = maxj Xj . We 
would like to find the joint distribution of the order statistics and specifically the 
distribution of minj Xj and maxj Xj . Note that 

P(max Xj ≤ x) = P(X1, . . . , Xn ≤ x) = P(X1 ≤ x) P(Xn ≤ x)
j 

· · · 

= FX1 (x) FXn (x).· · · 
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For the minimum, we have 

P(minXj ≤ x) = 1 − P(minXj > x)
j j 

= 1 − P(X1, . . . , Xn > x) 
= 1 − (1 − FX1 (x)) (1 − FXn (x)).· · · 

Let us consider the special case where the X1, . . . , Xn are i.i.d., with common 
CDF F and PDF f . For simplicity, assume that F is differentiable everywhere. 
Then, 

P(max Xj ≤ x) = F n(x), P(minXj ≤ x) = 1 − (1 − F (x))n , 
j j 

implying that 

fmaxj Xj (x) = nF n−1(x)f(x), fminj Xj (x) = n(1 − F (x))n−1f(x). 

Exercise 1. Assuming that X1, . . . , Xn are independent with common density function 
f , establish that the joint distribution of X(1), . . . , X(n) is given by 

fX(1),...,X(n) (x1, . . . , xn) = n!f(x1) f(xn), x1 < x2 < < xn,· · · · · · 

and fX(1),...,X(n) (x1, . . . , xn) = 0, otherwise. Use this to derive the densities for 
maxj Xj and minj Xj . 

SUM OF INDEPENDENT RANDOM VARIABLES – CONVOLUTION 

If X and Y are independent discrete random variables, the PMF of X + Y is 
easy to find: 

pX+Y (z) = P(X + Y = z) 

= P(X = x, Y = y) 
{(x,y)|x+y=z} 

= P(X = x, Y = z − x) 
x 

= pX (x)pY (z − x). 
x 

When X and Y are independent and jointly continuous, an analogous for
mula can be expected to hold. We derive it in two different ways. 
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A first derivation involves plain calculus. Let fX,Y be the joint PDF of X 
and Y . Then. 

∞ z−x 

P(X + Y ≤ z) = fX,Y (x, y) dx dy = fX,Y (x, y) dy dx. 
{x,y | x+y≤z} −∞ −∞ 

Introduce the change of variables t = x + y. Then, 

∞ z 

P(X + Y ≤ z) = fX,Y (x, t − x) dt dx, 
−∞ −∞ 

which gives 

∞
fX+Y (z) = fX,Y (x, z − x) dx. 

−∞ 

In the special case where X and Y are independent, we have fX,Y (x, y) = 
fX (x)fY (y), resulting in 

∞
fX+Y (z) = fX (x)fY (z − x) dx. 

−∞ 

If we were to use instead our general tools, we could proceed as follows. 
Consider the linear function g that maps (X, Y ) to (X, X + Y ). It is easily seen 
that the associated determinant is equal to 1. Thus, with Z = X + Y , we have 

fX,Z (x, z) = fX,Y (x, z − x) = fX (x)fY (z − x). 

We then integrate over all x, to obtain the marginal PDF of Z. 

Exercise 2. Suppose that X = 
d 

N(µ1, σ1
2), X2 = 

d 
N (µ2, σ2

2) and independent. Estab
lish that X1 + X2 = 

d 
N(µ1 + µ2, σ1

2 + σ2
2). 
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