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1 RANDOM VARIABLES AND MEASURABLE FUNCTIONS 

Loosely speaking a random variable provides us with a numerical value, depend
ing on the outcome of an experiment. More precisely, a random variable can be 
viewed as a function from the sample space to the real numbers, and we will use 
the notation X(ω) to denote the numerical value of a random variable X , when 
the outcome of the experiment is some particular ω. We may be interested in the 
probability that the outcome of the experiment is such that X is no larger than 
some c, i.e., that the outcome belongs to the set {ω | X(ω) ≤ c}. Of course, in 
order to have a probability assigned to that set, we need to make sure that it is 
F-measurable. This motivates Definition 1 below. 

Example 1. Consider a sequence of five consecutive coin tosses. An appropriate sample 
space is Ω = {0, 1}n, where “1” stands for heads and “0” for tails. Let F be the col
lection of all subsets of Ω, and suppose that a probability measure P has been assigned 
to (Ω, F). We are interested in the number of heads obtained in this experiment. This 
quantity can be described by the function X : Ω R, defined by → 

X(ω1, . . . , ωn) = ω1 + + ωn.· · · 
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With this definition, the set {ω | X(ω) < 4} is just the event that there were fewer than 
4 heads overall, belongs to the σ-field F , and therefore has a well-defined probability. 

Consider the real line, and let B be the associated Borel σ-field. Sometimes, 
we will also allow random variables that take values in the extended real line, 
R = R ∪ {−∞, ∞}. We define the Borel σ-field on R, also denoted by B, as 
the smallest σ-field that contains all Borel subsets of R and the sets {−∞} and 
{∞}. 

1.1 Random variables 

Definition 1. (Random variables) Let (Ω, F) be a measurable space. 

(a) A function X : Ω R is a random variable if the set {ω | X(ω) ≤ c} is→ 
F-measurable for every c ∈ R. 

(b) A function X : Ω R is an extended-valued random variable if the set → 
{ω | X(ω) ≤ c} is F-measurable for every c ∈ R. 

We note here a convention that will be followed throughout: we will always 
use upper case letters to denote random variables and lower case letters to denote 
numerical values (elements of R). Thus, a statement such as “X(ω) = x = 5” 
means that when the outcome happens to be ω, then the realized value of the 
random variable is a particular number x, equal to 5. 

Example 2. (Indicator functions) Suppose that A ⊂ Ω, and let IA : Ω → {0, 1} be 
the indicator function of that set; i.e., IA(ω) = 1, if ω ∈ A, and IA(ω) = 0, otherwise. 
If A ∈ F , then IA is a random variable. But if A /∈ F , then IA is not a random variable. 

Example 3. (A function of a random variable) Suppose that X is a random variable, 
and let us define a function Y : Ω → R by letting Y (ω) = X3(ω), for every ω ∈ Ω, or 
Y = X3 for short. We claim that Y is also a random variable. Indeed, for any c ∈ R, 
the set {ω | Y (ω) ≤ c} is the same as the set {ω | X(ω) ≤ c1/3}, which is in F , since 
X is a random variable. 

1.2 The law of a random variable 

For a random variable X , the event {ω | X(ω) ≤ c} is often written as {X ≤ c}, 
and is sometimes just called “the event that X ≤ c.” The probability of this event 
is well defined, since this event belongs to F . Let now B be a more general 
subset of the real line. We use the notation X−1(B) or {X ∈ B} to denote the 
set {ω | X(ω) ∈ B}. 
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Because the collection of intervals of the form (−∞, c] generates the Borel 
σ-field in R, it can be shown that if X is a random variable, then for any 
Borel set B, the set X−1(B) is F-measurable. It follows that the probability 
P X−1(B) = P({ω | X(ω) ∈ B}) is well-defined. It is often denoted by 
P(X ∈ B). 

Definition 2. (The probability law of a random variable) Let (Ω, F , P) be 
a probability space, and let X : Ω R be a random variable. → 

(a) For every Borel subset B of the real line (i.e., B ∈ B), we define PX (B) = 
P(X ∈ B). 

(b) The resulting function PX : B → [0, 1] is called the probability law of X . 

Sometimes, PX is also called the distribution of X , not to be confused with 
the cumulative distribution function defined in the next section. 

According to the next result, the law PX of X is also a probability measure. 
Notice here that PX is a measure on (R, B), as opposed to the original measure 
P, which is a measure on (Ω, F). In many instances, the original probability 
space (Ω, F , P) remains in the background, hidden or unused, and one works 
directly with the much more tangible probability space (R, B, PX ). Indeed, if 
we are only interested in the statistical properties of the random variable X , the 
latter space will do. 

Proposition 1. Let (Ω, F , P) be a probability space, and let X be a random 
variable. Then, the law PX of X is a measure on (R, B). 

Proof: Clearly, PX (B) ≥ 0, for every Borel set B. Also, PX (R) = P(X ∈
R) = P(Ω) = 1. We now verify countable additivity. Let {Bi} be a countable 
sequence of disjoint Borel subsets of R. Note that the sets X−1(Bi) are also 
disjoint, and that 

X−1 ∪∞i=1 Bi = ∪∞i=1X
−1(Bi), 

or, in different notation, 

{X ∈ ∪∞i=1Bi} = ∪∞i=1{X ∈ Bi}. 

Therefore, using countable additivity on the original probability space, we have 

� � � � ∞ ∞

PX ∪∞i=1 Bi = P i=1Bi = P(X ∈ Bi) = PX (Bi).X ∈ ∪∞
i=1 i=1 
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1.3 Technical digression: measurable functions 

The following generalizes the definition of a random variable. 

Definition 3. Let (Ω1, F1) and (Ω2, F2) be two measurable space. A func
tion f : Ω1 → Ω2 is called (F1, F2)-measurable (or just measurable, if 
the relevant σ-fields are clear from the context) if f−1(B) ∈ F1 for every 
B ∈ F2. 

According to the above definition, given a probability space (Ω, F , P), and 
taking into account the discussion in Section 1.1, a random variable on a proba
bility space is a function X : Ω → R that is (F , B)-measurable. 

As a general rule, functions constructed from other measurable functions 
using certain simple operations are measurable. We collect, without proof, a 
number of relevant facts below. 

Theorem 1. Let (Ω, F) be a measurable space. 

(a) (Simple random variables) If A ∈ F , the corresponding indicator function 
IA is measurable (more, precisely, it is (F , B)-measurable). 

(b) If A1, . . . , An are F-measurable sets, and x1, . . . , xn are real numbers, the 
function X = n

i=1 xiIAi , or in more detail, 

n

X(ω) = xiIAi (ω), ∀ ω ∈ Ω, 
i=1 

is a random variable (and is called a simple random variable). 

(c) Suppose that (Ω, F) = (R, B), and that X : R → R is continuous. Then, 
X is a random variable. 

(d) (Functions of a random variable) Let X be a random variable, and sup
pose that f : R → R is continuous (or more generally, (B, B)-measurable). 
Then, f(X) is a random variable. 

(e) (Functions of multiple random variables) Let X1, . . . , Xn be random 
variables, and suppose that f : Rn R is continuous. Then, f(X1, . . . , Xn)→
is a random variable. In particular, X1+X2 and X1X2 are random variables. 
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Another way that we can form a random variable is by taking the limit of 
a sequence of random variables. Let us first introduce some terminology. Let 
each fn be a function from some set Ω into R. Consider a new function f = 
infn fn defined by f(ω) = infn fn(ω), for every ω ∈ Ω. The functions supn fn, 
lim infn→∞ fn, and lim sup fn are defined similarly. (Note that even if n→∞ 
the fn are everywhere finite, the above defined functions may turn out to be 
extended-valued. ) If the limit limn→∞ fn(ω) exists for every ω, we say that the 
sequence of functions {fn} converges pointwise, and define its pointwise limit 
to be the function f defined by f(ω) = limn→∞ fn(ω). For example, suppose 
that Ω = [0, 1] and that fn(ω) = ωn. Then, the pointwise limit f = limn→∞ fn 

exists, and satisfies f(1) = 1, and f(ω) = 0 for ω ∈ [0, 1). 

Theorem 2. Let (Ω, F) be a measurable space. If Xn is a random variable 
for every n, then infn Xn, sup Xn, lim infn→∞ Xn, and lim sup Xnn n→∞
are random variables. Furthermore, if the sequence {Xn} converges point-
wise, and X = limn→∞ Xn, then X is also a random variable. 

As a special case of Theorem 2, we have that a pointwise limit of simple 
random variables is measurable. On the other hand, we note that measurable 
functions can be highly discontinuous. For example the function which equals 
1 at every rational number, and equals zero otherwise, is measurable, because it 
is the indicator function of a measurable set. 

2 CUMULATIVE DISTRIBUTION FUNCTIONS 

A simple way of describing the probabilistic properties of a random variable is 
in terms of the cumulative distribution function, which we now define. 

Definition 4. (Cumulative distribution function) Let X be a random vari
able. The function FX : R [0, 1], defined by → 

FX (x) = P(X ≤ x), 

is called the cumulative distribution function (CDF) of X . 

Example 4. Let X be the number of heads in two independent tosses of a fair coin. In 
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particular, P(X = 0) = P(X = 2) = 1/4, and P(X = 1) = 1/2. Then, 

FX (x) = 

⎧ ⎪⎪⎨ ⎪⎪⎩ 

0, if x < 0, 
1/4, if 0 ≤ x < 1, 

if 1 ≤ x < 2.3/4, 
1, if x ≥ 2. 

Example 5. (A uniform random variable and its square) Consider a probability space 
(Ω, B, P), where Ω = [0, 1], B is the Borel σ-field B, and P is the Lebesgue measure. 
The random variable U defined by U(ω) = ω is said to be uniformly distributed. Its 
CDF is given by 

FU (x) = 

⎧⎨ ⎩ 

0, if x < 0, 
x, if 0 < x < 1, 
1, if x ≥ 1. 

Consider now the random variable X = U2 . We have P(U2 ≤ x) = 0, when 
x < 0, and P(U2 ≤ x) = 1, when x ≥ 1. For x ∈ [0, 1), we have 

= 
√

x. {ω ∈ [0, 1] : ω ≤
√

x}P(U2 ω2≤ x) = P {ω ∈ [0, 1] = P| ≤ x} 

Thus, ⎧⎨ ⎩ 

0, if x < 0,√
x, if 0 ≤ x < 1, 

if x ≥ 1. 
FX (x) = 

1, 

2.1 CDF properties 

The cumulative distribution function of a random variable always possesses cer
tain properties. 

Theorem 3. Let X be a random variable, and let F be its CDF. 

(a) (Monotonicity) If x ≤ y, then FX (x) ≤ FX (y). 

(b) (Limiting values) We have limx→−∞ FX (x) = 0, and limx→∞ F (x) = 1. 

(c) (Right-continuity) For every x, we have limy x FX (y) = FX (x). ↓

Proof: 

(a) Suppose that x ≤ y. Then, {X ≤ x} ⊂ {X ≤ y}, which implies that 

F (x) = P(X ≤ x) ≤ P(X ≤ y) = F (y). 

6 



(b) Since FX (x) is monotonic in x and bounded below by zero, it converges as 
x → −∞, and the limit is the same for every sequence {xn} converging to 
−∞. So, let xn = −n, and note that the sequence of events ∩∞n=1{X ≤ 
−n} converges to the empty set. Using the continuity of probabilities, we 
obtain 

lim FX (x) = lim FX (−n) = lim P(X ≤ −n) = P(Ø) = 0. 
x→−∞ n→∞ n→∞ 

The proof of limx→∞ FX (x) = 1 is similar, and is omitted. 

(c) Consider a decreasing sequence {xn} that converges to x. The sequence of 
events {X ≤ xn} is decreasing and ∩∞n=1{X ≤ xn} = {X ≤ x}. Using 
the continuity of probabilities, we obtain 

lim FX (xn) = lim P(X ≤ xn) = P(X ≤ x) = FX (x). 
n→∞ n→∞ 

Since this is true for every such sequence {xn}, we conclude that 
limy↓x FX (y) = FX (x). 

We note that CDFs need not be left-continuous. For instance, in Example 4, 
we have limx 0 FX (x) = 0, but FX (0) = 1/4. ↑

2.2 From a CDF to a probability law 

Consider a function F : R [0, 1] that satisfies the three properties in Theorem →
3; we call such a function a distribution function. Given a distribution function 
F , does there exist a random variable X , defined on some probability space, 
whose CDF, FX , is equal to the given distribution F ? This is certainly the 
case for the distribution function F function that satisfies F (x) = x, for x ∈
(0, 1): the uniform random variable U in Example 5 will do. More generally, 
the objective FX = F can be accomplished by letting X = g(U), for a suitable 
function g : (0, 1) R.→ 

Theorem 4. Let F be a given distribution function. Consider the probabil
ity space ([0, 1], B, P), where B is the Borel σ-field, and P is the Lebesgue 
measure. There exists a measurable function X : Ω R whose CDF FX→
satisfies FX = F . 

Proof: We present the proof under an additional simplifying assumption. In 
particular, we assume that F is continuous and strictly increasing. Then, the 
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range of F is the entire interval (0, 1). Furthermore, F is invertible: for ev
ery y ∈ (0, 1), there exists a unique x, denoted F −1(y), such that F (x) = y. 
We define U(ω) = ω and X(ω) = F −1(ω), for every ω ∈ (0, 1), so that 
X = F −1(U). Note that F (F −1(ω)) = ω for every ω ∈ (0, 1), so that 
F (X) = U . Since F is strictly increasing, we have X ≤ x if and only 
F (X) ≤ F (x), or U ≤ F (x). (Note that this also establishes that the event 
{X ≤ x} is measurable, so that X is indeed a random variable.) Thus, for every 
x ∈ R, we have 

FX (x) = P(X ≤ x) = P F (X) ≤ F (x) = P(U ≤ F (x)) = F (x), 

as desired. 
Note that the probability law of X assigns probabilities to all Borel sets, 

whereas the CDF only specifies the probabilities of certain intervals. Neverthe
less, the CDF contains enough information to recover the law of X . 

Proposition 2. The probability law PX of a random variable X is uniquely 
determined by the CDF FX . 

Proof: (Outline) Let F0 be the collection of all subsets of the real line that are 
unions of finitely many intervals of the form (a, b]. Then, F0 is a field. Note 
that, the CDF FX can be used to completely determine the probability PX (A) 
of a set A ∈ F0. Indeed, this is done using relations such as 

PX ((a, b]) = P((−∞, b]) − P((−∞, a]) = FX (b) − FX (a), 

and finite additivity. Thus, FX completely determines PX on F0. Using the 
Extension Theorem, it follows that there exists a unique measure on (R, B) (the 
probability law of X) that agrees with the values determined by FX on F0. 

3 DISCRETE RANDOM VARIABLES 

Discrete random variables take values in a countable set. We need some nota
tion. Given a function f : Ω R, its range is the set → 

f(Ω) = {x ∈ R | ∃ ω ∈ Ω such that f(ω) = x}. 
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Definition 5. Discrete random variables and PMFs) 
(a) A random variable X , defined on a probability space (Ω, F , P), is said to be 

discrete if its range X(Ω) is countable. 

(b) If X is a discrete random variable, the function pX : R [0, 1] defined by → 
pX (x) = P(X = x), for every x, is called the (probability) mass function 
of X , or PMF for short. 

Consider a discrete random variable X whose range is a finite set C. In that 
case, for any Borel set A, countable additivity yields 

P(X ∈ A) = P(X ∈ A ∩ C) = P(X = x). 
x∈C 

In particular, the CDF is given by 

FX (x) = P(X = y). 
{y∈C | y≤x} 

A random variable that takes only integer values is discrete. For instance, the 
random variable in Example 4 (number of heads in two coin tosses) is discrete. 
Also, every simple random variable is discrete, since it takes a finite number of 
values. However, more complicated discrete random variables are also possible. 

Example 6. Let the sample space be the set N of natural numbers, and consider a 
measure that satisfies P(n) = 1/2n, for every n ∈ N. The random variable X defined 
by X(n) = n is discrete. 

Suppose now that the rational numbers have been arranged in a sequence, and that 
xn is the nth rational number, according to this sequence. Consider the random variable 
Y defined by Y (n) = xn. The range of this random variable is countable, so Y is a 
discrete random variable. Its range is the set of rational numbers, every rational number 
has positive probability, and the set of irrational numbers has zero probability. 

We close by noting that discrete random variables can be represented in 
terms of indicator functions. Indeed, given a discrete random variable X , with 
range {x1, x2, . . .}, we define An = xn}, for every n ∈ N. Observe that = {X 
each set An is measurable (why?). Furthermore, the sets An, n ∈ N, form a 
partition of the sample space. Using indicator functions, we can write 

∞

X(ω) = xnIAn (ω). 
n=1 
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Conversely, suppose we are given a sequence {An} of disjoint events, and a 
real sequence {xn}. Define X : Ω → R by letting X(ω) = xn if and only if 
ω ∈ An. Then X is a discrete random variable, and P(X = xn) = P(An), for 
every n. 

4 CONTINUOUS RANDOM VARIABLES 

The definition of a continuous random variable is more subtle. It is not enough 
for a random variable to have a “continuous range.” 

Definition 6. A random variable X , defined on a probability space (Ω, F , P), 
is said to be continuous if there exists a nonnegative measurable function 
f : R → [0, ∞) such that 

x 

FX (x) = f(t) dt, ∀ x ∈ R. (1) 
−∞ 

The function f is called a (probability) density function (or PDF, for short) 
for X , 

There is some ambiguity in the above definition, because the meaning of 
the integral of a measurable function may be unclear. We will see later in this 
course how such an integral is defined. For now, we just note that the integral 
is well-defined, and agrees with the Riemann integral encountered in calculus, 
if the function is continuous, or more generally, if it has a finite number of 
discontinuities. 

Since limx→∞ FX (x) = 1, we must have limx→∞ 
x 

f(t)dt = 1, or −∞ 

∞ 

fX (t) dt = 1. (2) 
−∞ 

Any nonnegative measurable function that satisfies Eq. (2) is called a density 
function. Conversely, given a density function f , we can define F (x) = x 

f(t) dt,−∞
and verify that F is a distribution function. It follows that given a density func
tion, there always exists a random variable whose PDF is the given density. 

If a CDF FX is differentiable at some x, the corresponding value fX (x) can 
be found by taking the derivative of FX at that point. However, CDFs need not 
be differentiable, so this will not always work. Let us also note that a PDF of 
a continuous random variable is not uniquely defined. We can always change 
the PDF at a finite set of points, without affecting its integral, hence multiple 
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PDFs can be associated to the same CDF. However, this nonuniqueness rarely 
becomes an issue. In the sequel, we will often refer to “the PDF” of X , ignoring 
the fact that it is nonunique. 

Example 7. For a uniform random variable, we have FX (x) = P(X ≤ x) = x, for 
every x ∈ (0, 1). By differentiating, we find fX (x) = 1, for x ∈ (0, 1). For x < 0 
we have FX (x) = 0, and for x > 1 we have FX (x) = 1; in both cases, we obtain 
fX (x) = 0. At x = 0, the CDF is not differentiable. We are free to define fX (0) to be 
0, or 1, or in fact any real number; the value of the integral of fX will remain unaffected. 

Using the PDF of a continuous random variable, we can calculate the prob
ability of various subsets of the real line. For example, we have P(X = x) = 0, 
for all x, and if a < b, � b 

P(a < X < b) = P(a ≤ X ≤ b) = fX (t) dt. 
a 

More generally, for any Borel set B, it turns out that 

P(X ∈ B) = f(t) dt = IB(t)fX (t) dt, 
B 

and that P(X ∈ B) = 0 whenever B has Lebesgue measure zero. However, 
more detail on this subject must wait until we develop the theory of integration 
of measurable functions. 

We close by pointing out that not all random variables are continuous or 
discrete. For example, suppose that X is a discrete random variable, and that Y 
is a continuous random variable. Fix some λ ∈ (0, 1), and define 

F (z) = λFX (x) + (1 − λ)FY (y). (3) 

It can be verified that F is a distribution function, and therefore can be viewed 
as the CDF of some new random variable Z. However, the random variable Z is 
neither discrete, nor continuous. For an interpretation, we can visualize Z being 
generated as follows: we first generate the random variables X and Y ; then, 
with probability λ, we set Z = X , and with probability 1 − λ, we set Z = Y . 

Even more pathological random variables are possible. Appendix B dis
cusses a particularly interesting one. 

5 APPENDIX A – CONTINUOUS FUNCTIONS 

We introduce here some standard notation and terminology regarding conver
gence of function values, and continuity. 
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(a) Consider a function f : Rm → R, and fix some x ∈ Rm. We say that f(y) 
converges to a value c, as y tends to x, if we have limn→∞ f(xn) = c, for 
every sequence {xn} of elements of Rm such that xn =� x for all n, and 
limn→∞ xn = x. In this case, we write limy x f(y) = c. →

(b) If f : Rm R and limy x f(y) = f(x), we say that continuous at x. If → →
this holds for every x, we say that f is continuous. 

(c) Consider a function f : R R, and fix some x ∈ R ∪ {−∞}. We say that →
f(y) converges to a value c, as y decreases to x, if we have limn→∞ f(xn) = 
c, for every decreasing sequence {xn} of elements of Rm such that xn > x 
for all n, and limn→∞ xn = x. In this case, we write limy x f(y) = c. ↓

(d) If f : R R and limy x f(y) = f(x), we say that the function f is→ ↓
right-continuous at x. If this holds for every x ∈ R, we say that f is 
right-continuous. 

(e) Consider a function f : R R, and fix some x ∈ R ∪ {∞}. We say that →
f(y) converges to a value c, as y increases to x, if we have limn→∞ f(xn) = 
c, for every increasing sequence {xn} of elements of R such that xn < x 
for all n, and limn→∞ xn = x. In this case, we write limy x f(y) = c. ↑

(f) If f : R R and limy f(y) = f(x), we say that the function f is→ ↑x 

left-continuous at x. If this holds for every x ∈ R, we say that f is left-
continuous. 

For a function f : R → R, and some x ∈ R, it is not hard to show, starting 
from the above definitions, that f is continuous at x if and only if it is both 
left-continuous and right-continuous. 

6 APPENDIX B – THE CANTOR SET, AN UNUSUAL RANDOM VARI
ABLE, AND A SINGULAR MEASURE 

Every number x ∈ [0, 1] has a ternary expansion of the form 

∞
xi 

x = , with xi ∈ {0, 1, 2}. (4)
3i 

i=1 

This expansion is not unique. For example, 1/3 admits two expansions, namely 
.10000 and .022222 . Nonuniqueness occurs only for those x that admit · · · · · · 
an expansion ending with an infinite sequence of 2s. The set of such unusual x 
is countable, and therefore has Lebesgue measure zero. 
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The Cantor set C is defined as the set of all x ∈ [0, 1] that have a ternary ex
pansion that uses only 0s and 2s (no 1s allowed). The set C can be constructed as 
follows. Start with the interval [0, 1] and remove the “middle third” (1/3, 2/3). 
Then, from each of the remaining closed intervals, [0, 1/3] and [2/3, 1], remove 
their middle thirds, (1/9, 2/9) and (7/9, 8/9), resulting in four closed intervals, 
and continue this process indefinitely. Note that C is measurable, since it is 
constructed by removing a countable sequence of intervals. Also, the length 
(Lebesgue measure) of C is 0, since at each stage its length is mutliplied by a 
factor of 2/3. On the other hand, the set C has the same cardinality as the set 
{0, 2}∞, and is uncountable. 

Consider now an infinite sequence of independent rolls of a 3-sided die, 
whose faces are labeled 0, 1, and 2. Assume that at each roll, each of the three 
possible results has the same probability, 1/3. If we use the sequence of these 
rolls to form a number x, then the probability law of the resulting random vari
able is the Lebesgue measure (i.e., picking a ternary expansion “at random” 
leads to a uniform random variable). 

The Cantor set can be identified with the event consisting of all roll se
quences in which a 1 never occurs. (This event has zero probability, which is 
consistent with the fact that C has zero Lebesgue measure.) 

Consider now an infinite sequence of independent tosses of a fair coin. If 
the ith toss results in tails, record xi = 0; if it results in heads, record xi = 2. 
Use the xis to form a number x, using Eq. (4). This defines a random variable 
X on ([0, 1], B), whose range is the set C. The probability law of this random 
variable is therefore concentrated on the “zero-length” set C. At the same time, 
P(X = x) = 0 for every x, because any particular sequence of heads and tails 
has zero probability. A measure with this property is called singular. 

The random variable X that we have constructed here is neither discrete nor 
continuous. Moreover, the CDF of X cannot be written as a mixture of the kind 
considered in Eq. (3). 
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