MASSACHUSETTS INSTITUTE OF TECHNOLOGY

COUNTING

Readings: [Bertsekas \& Tsitsiklis], Section 1.6, and solved problems 57-58 (in 1st edition) or problems 61-62 (in 2nd edition). These notes only cover the part of the lecture that is not covered in [BT].

1 BANACH'S MATCHBOX PROBLEM

A mathematician starts the day with a full matchbox, containing n matches, in each pocket. Each time a match is needed, the mathematician reaches into a "random" pocket and takes a match out of the corresponding box. We are interested in the probability that the first time that the mathematician reaches into a pocket and finds an empty box, the other box contains exactly k matches.
Solution: The event of interest can happen in two ways:
(a) In the first $2 n-k$ times, the mathematician reached n times into the right pocket, $n-k$ times into the left pocket, and then, at time $2 n-k+1$, into the right pocket.
(b) In the first $2 n-k$ times, the mathematician reached n times into the left pocket, $n-k$ times into the right pocket, and then, at time $2 n-k+1$, into the left pocket.

Scenario (a) has probability

$$
\binom{2 n-k}{n} \cdot \frac{1}{2^{2 n-k}} \cdot \frac{1}{2} .
$$

Scenario (b) has the same probability. Thus, the overall probability is

$$
\binom{2 n-k}{n} \cdot \frac{1}{2^{2 n-k}}
$$

2 MULTINOMIAL PROBABILITIES

Consider a sequence of n independent trials. At each trial, there are r possible results, $a_{1}, a_{2}, \ldots, a_{r}$, and the i th result is obtained ith probability p_{i}. What is
the probability that in n trials there were exactly n_{1} results equal to a_{1}, n_{2} results equal to r_{2}, etc., where the n_{i} are given nonnegative integers that add to n ?
Solution: Note that every possible outcome (n-long sequence of results) that involves n_{i} results equal to a_{i}, for all i, has the same probability, $p_{1}^{n_{1}} \cdots p_{r}^{n_{r}}$. How many such sequences are there? Any such sequence corresponds to a partition of the set $\{1, \ldots n\}$ of trials into subsets of sizes n_{1}, \ldots, n_{r} : the i th subset, of size n_{i}, indicates the trials at which the result was equal to a_{i}. Thus, using the formula for the number of partitions, the desired probability is equal to

$$
\frac{n!}{n_{1}!\cdots n_{r}!} \cdot p_{1}^{n_{1}} \cdots p_{r}^{n_{r}}
$$

MIT OpenCourseWare
http://ocw.mit.edu

6.436J / 15.085J Fundamentals of Probability

Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

