MASSACHUSETTS INSTITUTE OF TECHNOLOGY

CONDITIONING AND INDEPENDENCE

Most of the material in this lecture is covered in [Bertsekas \& Tsitsiklis] Sections 1.3-1.5 and Problem 48 (or problem 43, in the 1st edition), available at http: //athenasc.com/Prob-2nd-Ch1.pdf. Solutions to the end of chapter problems are available athttp://athenasc.com/prob-solved_2ndedition. pdf. These lecture notes provide some additional details and twists.

Contents

1. Conditional probability
2. Independence
3. The Borel-Cantelli lemma

1 CONDITIONAL PROBABILITY

Definition 1. Consider a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, and an event $B \in \mathcal{F}$ with $\mathbb{P}(B)>0$. For every event $A \in \mathcal{F}$, the conditional probability that A occurs given that B occurs is denoted by $\mathbb{P}(A \mid B)$ and is defined by

$$
\mathbb{P}(A \mid B)=\frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}
$$

Theorem 1. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space.
(a) If B is an event with $\mathbb{P}(B)>0$, then $\mathbb{P}(\Omega \mid B)=1$, and for any sequence $\left\{A_{i}\right\}$ of disjoint events, we have

$$
\mathbb{P}\left(\cup_{i=1}^{\infty} A_{i} \mid B\right)=\sum_{i=1}^{\infty} \mathbb{P}\left(A_{i} \mid B\right)
$$

(b) Suppose that B is an event with $\mathbb{P}(B)>0$. For every $A \in \mathcal{F}$, define $\mathbb{P}_{B}(A)=\mathbb{P}(A \mid B)$. Then, \mathbb{P}_{B} is a probability measure on (Ω, \mathcal{F}).
(c) Let A be an event. If the events $B_{i}, i \in \mathbb{N}$, form a partition of Ω, and $\mathbb{P}\left(B_{i}\right)>0$ for every i, then

$$
\mathbb{P}(A)=\sum_{i=1}^{n} \mathbb{P}\left(A \mid B_{i}\right) \mathbb{P}\left(B_{i}\right)
$$

In particular, if B is an event with $\mathbb{P}(B)>0$ and $\mathbb{P}\left(B^{c}\right)>0$, then

$$
\mathbb{P}(A)=\mathbb{P}(A \mid B) \mathbb{P}(B)+\mathbb{P}\left(A \mid B^{c}\right) \mathbb{P}\left(B^{c}\right)
$$

(d) (Bayes' rule) Let A be an event with $\mathbb{P}(A)>0$. If the events $B_{i}, i \in \mathbb{N}$, form a partition of Ω, and $\mathbb{P}\left(B_{i}\right)>0$ for every i, then

$$
\mathbb{P}\left(B_{i} \mid A\right)=\frac{\mathbb{P}\left(B_{i}\right) \mathbb{P}\left(A \mid B_{i}\right)}{\mathbb{P}(A)}=\frac{\mathbb{P}\left(B_{i}\right) \mathbb{P}\left(A \mid B_{i}\right)}{\sum_{j=1}^{\infty} \mathbb{P}\left(B_{j}\right) \mathbb{P}\left(A \mid B_{j}\right)} .
$$

(e) For any sequence $\left\{A_{i}\right\}$ of events, we have

$$
\mathbb{P}\left(\cap_{i=1}^{\infty} A_{i}\right)=\mathbb{P}\left(A_{1}\right) \prod_{i=2}^{\infty} \mathbb{P}\left(A_{i} \mid A_{1} \cap \cdots \cap A_{i-1}\right),
$$

as long as all conditional probabilities are well defined.

Proof.

(a) We have $\mathbb{P}(\Omega \mid B)=\mathbb{P}(\Omega \cap B) / \mathbb{P}(B)=\mathbb{P}(B) / \mathbb{P}(B)=1$. Also

$$
\mathbb{P}\left(\cup_{i=1}^{\infty} A_{i} \mid B\right)=\frac{\mathbb{P}\left(B \cap\left(\cup_{i=1}^{\infty} A_{i}\right)\right)}{\mathbb{P}(B)}=\frac{\mathbb{P}\left(\cup_{i=1}^{\infty}\left(B \cap A_{i}\right)\right)}{\mathbb{P}(B)} .
$$

Since the sets $B \cap A_{i}, i \in \mathbb{N}$ are disjoint, countable additivity, applied to the right-hand side, yields

$$
\mathbb{P}\left(\cup_{i=1}^{\infty} A_{i} \mid B\right)=\frac{\sum_{i=1}^{\infty} \mathbb{P}\left(B \cap A_{i}\right)}{\mathbb{P}(B)}=\sum_{i=1}^{\infty} \mathbb{P}\left(A_{i} \mid B\right)
$$

as claimed.
(b) This is immediate from part (a).
(c) We have

$$
\begin{aligned}
\mathbb{P}(A) & =\mathbb{P}(A \cap \Omega)=\mathbb{P}\left(A \cap\left(\cup_{i=1}^{\infty} B_{i}\right)\right)=\mathbb{P}\left(\cup_{i=1}^{\infty}\left(A \cap B_{i}\right)\right) \\
& =\sum_{i=1}^{\infty} \mathbb{P}\left(A \cap B_{i}\right)=\sum_{i=1}^{\infty} \mathbb{P}\left(A \mid B_{i}\right) \mathbb{P}\left(B_{i}\right) .
\end{aligned}
$$

In the second equality, we used the fact that the sets B_{i} form a partition of Ω. In the next to last equality, we used the fact that the sets B_{i} are disjoint and countable additivity.
(d) This follows from the fact

$$
\mathbb{P}\left(B_{i} \mid A\right)=\mathbb{P}\left(B_{i} \cap A\right) / \mathbb{P}(A)=\mathbb{P}\left(A \mid B_{i}\right) \mathbb{P}\left(B_{i}\right) / \mathbb{P}(A),
$$

and the result from part (c).
(e) Note that the sequence of events $\cap_{i=1}^{n} A_{i}$ is decreasing and converges to $\cap_{i=1}^{\infty} A_{i}$. By the continuity property of probability measures, we have $\mathbb{P}\left(\cap_{i=1}^{\infty}\right.$ $\left.A_{i}\right)=\lim _{n \rightarrow \infty} \mathbb{P}\left(\cap_{i=1}^{n} A_{i}\right)$. Note that

$$
\begin{aligned}
\mathbb{P}\left(\cap_{i=1}^{n} A_{i}\right) & =\mathbb{P}\left(A_{1}\right) \cdot \frac{\mathbb{P}\left(A_{1} \cap A_{2}\right)}{\mathbb{P}\left(A_{1}\right)} \cdot \frac{\mathbb{P}\left(A_{1} \cap A_{2} \cap A_{3}\right)}{\mathbb{P}\left(A_{1} \cap A_{2}\right)} \cdots \frac{\mathbb{P}\left(A_{1} \cap \cdots \cap A_{n}\right)}{\mathbb{P}\left(A_{1} \cap \cdots \cap A_{n-1}\right)} \\
& =\mathbb{P}\left(A_{1}\right) \prod_{i=2}^{n} \mathbb{P}\left(A_{i} \mid A_{1} \cap \cdots \cap A_{i-1}\right) .
\end{aligned}
$$

Taking the limit, as $n \rightarrow \infty$, we obtain the claimed result.

2 INDEPENDENCE

Intuitively we call two events A, B independent if the occurrence or nonoccurrence of one does not affect the probability assigned to the other. The following definition formalizes and generalizes the notion of independence.

Definition 2. Let $(\Omega, \mathcal{F} . \mathbb{P})$ be a probability space.
(a) Two events, A and B, are said to be independent if $\mathbb{P}(A \cap B)=\mathbb{P}(A) \mathbb{P}(B)$. If $\mathbb{P}(B)>0$, an equivalent condition is $\mathbb{P}(A)=\mathbb{P}(A \mid B)$.
(b) Let S be an index set (possibly infinite, or even uncountable), and let $\left\{A_{s} \mid\right.$ $s \in S\}$ be a family (set) of events. The events in this family are said to be independent if for every finite subset S_{0} of S, we have

$$
\mathbb{P}\left(\cap_{s \in S_{0}} A_{s}\right)=\prod_{s \in S_{0}} \mathbb{P}\left(A_{s}\right)
$$

(c) Let $\mathcal{F}_{1} \subset \mathcal{F}$ and $\mathcal{F}_{2} \subset \mathcal{F}$ be two σ-fields. We say that \mathcal{F}_{1} and \mathcal{F}_{2} are independent if any two events $A_{1} \in \mathcal{F}_{1}$ and $A_{2} \in \mathcal{F}_{2}$ are independent.
(d) More generally, let S be an index set, and for every $s \in S$, let \mathcal{F}_{s} be a σ field contained in \mathcal{F}. We say that the σ-fields \mathcal{F}_{s} are independent if the following holds. If we pick one event A_{s} from each \mathcal{F}_{s}, the events in the resulting family $\left\{A_{s} \mid s \in S\right\}$ are independent.

Example. Consider an infinite sequence of fair coin tosses, under the model constructed in the Lecture 2 notes. The following statements are intuitively obvious (although a formal proof would require a few steps).
(a) Let A_{i} be the event that the $i t$ toss resulted in a " 1 ". If $i \neq j$, the events A_{i} and A_{j} are independent.
(b) The events in the (infinite) family $\left\{A_{i} \mid i \in \mathbb{N}\right\}$ are independent. This statement captures the intuitive idea of "independent" coin tosses.
(c) Let \mathcal{F}_{1} (respectively, \mathcal{F}_{2}) be the collection of all events whose occurrence can be decided by looking at the results of the coin tosses at odd (respectively, even) times n. More formally, Let H_{i} be the event that the i th toss resulted in a 1 . Let \mathcal{C} be the collection of events $\mathcal{C}=\left\{H_{i} \mid i\right.$ is odd $\}$, and finally let $\mathcal{F}_{1}=\sigma(\mathcal{C})$, so that \mathcal{F}_{1} is the smallest σ-field that contains all the events H_{i}, for even i. We define \mathcal{F}_{2} similarly, using even times instead of odd times. Then, the two σ-fields \mathcal{F}_{1} and \mathcal{F}_{2} turn out to be independent. This statement captures the intuitive idea that knowing the results of the tosses at odd times provides no information on the results of the tosses at even times.
(d) Let \mathcal{F}_{n} be the collection of all events whose occurrence can be decided by looking at the results of tosses $2 n$ and $2 n+1$. (Note that each \mathcal{F}_{n} is a σ-field comprised of finitely many events.) Then, the families $\mathcal{F}_{n}, n \in \mathbb{N}$, are independent.
Remark: How can one establish that two σ-fields (e.g., as in the above coin-
tossing example) are independent? It turns out that one only needs to check independence for smaller collections of sets; see the theorem below (the proof is omitted and can be found in p. 39 of [W]).

Theorem: If \mathcal{G}_{1} and \mathcal{G}_{2} are two collections of measurable sets, that are closed under intersection (that is, if $A, B \in \mathcal{G}_{i}$, then $\left.A \cap B \in \mathcal{G}_{i}\right)$, if $\mathcal{F}_{i}=\sigma\left(\mathcal{G}_{i}\right)$, $i=1,2$, and if $\mathbb{P}(A \cap B)=\mathbb{P}(A) \mathbb{P}(B)$ for every $A \in \mathcal{G}_{1}, B \in \mathcal{G}_{2}$, then \mathcal{F}_{1} and \mathcal{F}_{2} are independent.

3 THE BOREL-CANTELLI LEMMA

The Borel-Cantelli lemma is a tool that is often used to establish that a certain event has probability zero or one. Given a sequence of events $A_{n}, n \in \mathbb{N}$, recall that $\left\{A_{n}\right.$ i.o. $\}$ (read as " A_{n} occurs infinitely often") is the event consisting of all $\omega \in \Omega$ that belong to infinitely many A_{n}, and that

$$
\left\{A_{n} \text { i.o. }\right\}=\limsup _{n \rightarrow \infty} A_{n}=\bigcap_{n=1}^{\infty} \bigcup_{i=n}^{\infty} A_{i} \text {. }
$$

Theorem 2. (Borel-Cantelli lemma) Let $\left\{A_{n}\right\}$ be a sequence of events and let $A=\left\{A_{n}\right.$ i.o. $\}$.
(a) If $\sum_{n=1}^{\infty} \mathbb{P}\left(A_{n}\right)<\infty$, then $\mathbb{P}(A)=0$.
(b) If $\sum_{n=1}^{\infty} \mathbb{P}\left(A_{n}\right)=\infty$ and the events $A_{n}, n \in \mathbb{N}$, are independent, then $\mathbb{P}(A)=1$.

Remark: The result in part (b) is not true without the independence assumption. Indeed, consider an arbitrary event C such that $0<\mathbb{P}(C)<1$ and let $A_{n}=C$ for all n. Then $\mathbb{P}\left(\left\{A_{n}\right.\right.$ i.o. $\left.\}\right)=\mathbb{P}(C)<1$, even though $\sum_{n} \mathbb{P}\left(A_{n}\right)=\infty$.

The following lemma is useful here and in may other contexts.
Lemma 1. Suppose that $0 \leq p_{i} \leq 1$ for every $i \in \mathbb{N}$, and that $\sum_{i=1}^{\infty} p_{i}=\infty$. Then, $\prod_{i=1}^{\infty}\left(1-p_{i}\right)=0$.

Proof. Note that $\log (1-x)$ is a concave function of its argument, and its derivative at $x=0$ is -1 . It follows that $\log (1-x) \leq-x$, for $x \in[0,1]$. We then
have

$$
\begin{aligned}
\log \prod_{i=1}^{\infty}\left(1-p_{i}\right) & =\log \left(\lim _{n \rightarrow \infty} \prod_{i=1}^{n}\left(1-p_{i}\right)\right) \\
& \leq \log \prod_{i=1}^{k}\left(1-p_{i}\right) \\
& =\sum_{i=1}^{k} \log \left(1-p_{i}\right) \\
& \leq \sum_{i=1}^{k}\left(-p_{i}\right)
\end{aligned}
$$

This is true for every k. By taking the limit as $k \rightarrow \infty$, we obtain $\log \prod_{i=1}^{\infty}(1-$ $\left.p_{i}\right)=-\infty$, and $\prod_{i=1}^{\infty}\left(1-p_{i}\right)=0$.

Proof of Theorem 2.

(a) The assumption $\sum_{n=1}^{\infty} \mathbb{P}\left(A_{n}\right)<\infty$ implies that $\lim _{n \rightarrow \infty} \sum_{i=n}^{\infty} \mathbb{P}\left(A_{i}\right)=0$. Note that for every n, we have $A \subset \cup_{i=n}^{\infty} A_{i}$. Then, the union bound implies that

$$
\mathbb{P}(A) \leq \mathbb{P}\left(\cup_{i=n}^{\infty} A_{i}\right) \leq \sum_{i=n}^{\infty} \mathbb{P}\left(A_{n}\right)
$$

We take the limit of both sides as $n \rightarrow \infty$. Since the right-hand side converges to zero, $\mathbb{P}(A)$ must be equal to zero.
(b) Let $B_{n}=\cup_{i=n}^{\infty} A_{i}$, and note that $A=\cap_{n=1}^{\infty} B_{n}$. We claim that $\mathbb{P}\left(B_{n}^{c}\right)=0$. This will imply the desired result because

$$
\mathbb{P}\left(A^{c}\right)=\mathbb{P}\left(\cup_{n=1}^{\infty} B_{n}^{c}\right) \leq \sum_{n=1}^{\infty} \mathbb{P}\left(B_{n}^{c}\right)=0
$$

Let us fix some n and some $m \geq n$. We have, using independence,

$$
\mathbb{P}\left(\cap_{i=n}^{m} A_{i}^{c}\right)=\prod_{i=n}^{m} \mathbb{P}\left(A_{i}^{c}\right)=\prod_{i=n}^{m}\left(1-\mathbb{P}\left(A_{i}\right)\right)
$$

The assumption $\sum_{i=1}^{\infty} \mathbb{P}\left(A_{i}\right)=\infty$ implies that $\sum_{i=n}^{\infty} \mathbb{P}\left(A_{i}\right)=\infty$. Using Lemma 1, with the sequence $\left\{\mathbb{P}\left(A_{i}\right) \mid i \geq n\right\}$ replacing the sequence $\left\{p_{i}\right\}$, we obtain

$$
\mathbb{P}\left(B_{n}^{c}\right)=\mathbb{P}\left(\cap_{i=n}^{\infty} A_{i}^{c}\right)=\lim _{m \rightarrow \infty} \mathbb{P}\left(\cap_{i=n}^{m} A_{i}^{c}\right)=\lim _{m \rightarrow \infty} \prod_{i=n}^{m}\left(1-\mathbb{P}\left(A_{i}\right)\right)=0,
$$

where the second equality made use of the continuity property of probability measures.

MIT OpenCourseWare
http://ocw.mit.edu

6.436J / 15.085J Fundamentals of Probability

Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

