Massachusetts Institute of Technology
 Department of Electrical Engineering and Computer Science

 6.341: Discrete-Time Signal Processing

 6.341: Discrete-Time Signal Processing}

Fall 2005

Problem Set 11 Solutions

Issued: Thursday, December 8, 2005

Problem 11.1 (OSB 11.3)
Note: The answers in the back of the book may not be correct in your version of the textbook.
We factor $\left|X\left(e^{j \omega}\right)\right|^{2}$ into:

$$
\begin{aligned}
\left|X\left(e^{j \omega}\right)\right|^{2} & =\frac{5}{4}-\cos \omega \\
& =\left(1-\frac{1}{2} e^{-j \omega}\right)\left(1-\frac{1}{2} e^{j \omega}\right) \\
& =X\left(e^{j \omega}\right) X^{*}\left(e^{j \omega}\right)
\end{aligned}
$$

As a first attempt, we take

$$
\begin{aligned}
X\left(e^{j \omega}\right) & =1-\frac{1}{2} e^{-j \omega} \\
x[n] & =\delta[n]-\frac{1}{2} \delta[n-1]
\end{aligned}
$$

which does not satisfy the constraints $x[0]=0$ and $x[1]>0$.
We can modify the above choice by cascading it with an all-pass system, which will not affect the magnitude squared of the Fourier transform. Therefore we let

$$
\begin{aligned}
X\left(e^{j \omega}\right) & =\left(1-\frac{1}{2} e^{-j \omega}\right) e^{-j \omega} \\
x[n] & =\delta[n-1]-\frac{1}{2} \delta[n-2]
\end{aligned}
$$

which does satisfy all of the constraints.
Another choice that works is to take the second factor in $\left|X\left(e^{j \omega}\right)\right|^{2}$ and cascade it with $\left(-e^{-j 2 \omega}\right)$:

$$
\begin{aligned}
X\left(e^{j \omega}\right) & =\left(1-\frac{1}{2} e^{j \omega}\right)\left(-e^{-j 2 \omega}\right)=\frac{1}{2} e^{-j \omega}-e^{-j 2 \omega} \\
x[n] & =\frac{1}{2} \delta[n-1]-\delta[n-2]
\end{aligned}
$$

Note that this second choice uses the zero at $z=2$, the conjugate reciprocal of the zero at $z=\frac{1}{2}$ in the first choice. Conjugate reciprocal zeroes yield the same Fourier transform magnitude (up to a scaling).

Problem 11.2

The inverse DTFT of $j \operatorname{Im}\left\{Y\left(e^{j \omega}\right)\right\}$ is the odd part of $y[n]$, denoted by $y_{o}[n]$.

$$
\begin{aligned}
y_{o}[n] & =\operatorname{DTFT}^{-1}[j 3 \sin \omega+j \sin 3 \omega] \\
& =\operatorname{DTFT}^{-1}\left[\frac{1}{2}\left(3 e^{j \omega}-3 e^{-j \omega}+e^{j 3 \omega}-e^{-j 3 \omega}\right)\right] \\
& =\frac{1}{2}(3 \delta[n+1]-3 \delta[n-1]+\delta[n+3]-\delta[n-3])
\end{aligned}
$$

Since $y[n]$ is real and causal,

$$
\begin{aligned}
y[n] & =2 y_{o}[n] u[n]+y[0] \delta[n] \\
& =y[0] \delta[n]-3 \delta[n-1]-\delta[n-3]
\end{aligned}
$$

To determine $y[0]$, we use the fact that $\left.Y\left(e^{j \omega}\right)\right|_{\omega=\pi}=3$, i.e.,

$$
\begin{aligned}
\left.Y\left(e^{j \omega}\right)\right|_{\omega=\pi} & =\sum_{n=-\infty}^{\infty} y[n](-1)^{n} \\
& =y[0]+3+1=3 \\
y[0] & =-1
\end{aligned}
$$

Therefore,

$$
y[n]=-\delta[n]-3 \delta[n-1]-\delta[n-3]
$$

Problem 11.3 (OSB 11.5)

In the frequency domain, the Hilbert transform is a 90° phase shifter:

$$
H\left(e^{j \omega}\right)= \begin{cases}-j, & 0<\omega<\pi \\ j, & -\pi<\omega<0\end{cases}
$$

To find the Hilbert transform of each sequence, we will take the Fourier transform, multiply by $H\left(e^{j \omega}\right)$, and take the inverse Fourier transform.
(a)

$$
\begin{aligned}
x_{r}[n] & =\cos \omega_{0} n \\
X_{r}\left(e^{j \omega}\right) & =\pi \delta\left(\omega-\omega_{0}\right)+\pi \delta\left(\omega+\omega_{0}\right), \quad-\pi<\omega \leq \pi \\
X_{i}\left(e^{j \omega}\right) & =H\left(e^{j \omega}\right) X_{r}\left(e^{j \omega}\right) \\
& =-j \pi \delta\left(\omega-\omega_{0}\right)+j \pi \delta\left(\omega+\omega_{0}\right), \quad-\pi<\omega \leq \pi \\
x_{i}[n] & =\sin \omega_{0} n
\end{aligned}
$$

(b)

$$
\begin{array}{rlrl}
x_{r}[n] & =\sin \omega_{0} n \\
X_{r}\left(e^{j \omega}\right) & =\frac{\pi}{j} \delta\left(\omega-\omega_{0}\right)-\frac{\pi}{j} \delta\left(\omega+\omega_{0}\right), & & -\pi<\omega \leq \pi \\
X_{i}\left(e^{j \omega}\right) & =-\pi \delta\left(\omega-\omega_{0}\right)-\pi \delta\left(\omega+\omega_{0}\right), & & -\pi<\omega \leq \pi \\
x_{i}[n] & =-\cos \omega_{0} n & &
\end{array}
$$

(c) $x_{r}[n]$ is the impulse response of an ideal low-pass filter with cut-off frequency ω_{c} :

$$
\begin{aligned}
x_{r}[n] & =\frac{\sin \left(\omega_{c} n\right)}{\pi n} \\
X_{r}\left(e^{j \omega}\right) & = \begin{cases}1, & |\omega|<\omega_{c} \\
0, & \omega_{c}<|\omega| \leq \pi\end{cases} \\
X_{i}\left(e^{j \omega}\right) & = \begin{cases}-j, & 0<\omega<\omega_{c} \\
j, & -\omega_{c}<\omega<0 \\
0, & \omega_{c}<|\omega| \leq \pi\end{cases} \\
x_{i}[n] & =\frac{1}{2 \pi} \int_{-\omega_{c}}^{0} j e^{j \omega n} d \omega-\frac{1}{2 \pi} \int_{0}^{\omega_{c}} j e^{j \omega n} d \omega \\
& =\frac{1-\cos \left(\omega_{c} n\right)}{\pi n}
\end{aligned}
$$

Problem 11.4

The DTFT of $y_{1}[n]$ is given by

$$
Y_{1}\left(e^{j \omega}\right)=X\left(e^{j \omega}\right) e^{j \theta(\omega)}, \quad-\pi<\omega<\pi
$$

The DTFT of $y_{2}[n]$ is given by

$$
\begin{aligned}
Y_{2}\left(e^{j \omega}\right) & = \begin{cases}X\left(e^{j \omega}\right) e^{j(\theta(\omega)-\pi / 2)}, & 0<\omega<\pi \\
X\left(e^{j \omega}\right) e^{j(\theta(\omega)+\pi / 2)}, & -\pi<\omega<0\end{cases} \\
& = \begin{cases}-j X\left(e^{j \omega}\right) e^{j \theta(\omega)}, & 0<\omega<\pi \\
j X\left(e^{j \omega}\right) e^{j \theta(\omega)}, & -\pi<\omega<0\end{cases}
\end{aligned}
$$

Since $w[n]=y_{1}[n]+j y_{2}[n]$,

$$
\begin{aligned}
W\left(e^{j \omega}\right) & =Y_{1}\left(e^{j \omega}\right)+j Y_{2}\left(e^{j \omega}\right) \\
& = \begin{cases}X\left(e^{j \omega}\right) e^{j \theta(\omega)}(1+1), & 0<\omega<\pi \\
X\left(e^{j \omega}\right) e^{j \theta(\omega)}(1-1), & -\pi<\omega<0\end{cases} \\
& = \begin{cases}2 X\left(e^{j \omega}\right) e^{j \theta(\omega)}, & 0<\omega<\pi \\
0, & -\pi<\omega<0\end{cases}
\end{aligned}
$$

Therefore,

$$
W\left(e^{j \omega}\right)=0, \quad-\pi<\omega<0
$$

and since $\left|e^{j \theta(\omega)}\right|=1$,

$$
\left|W\left(e^{j \omega}\right)\right|=2\left|X\left(e^{j \omega}\right)\right|, \quad 0<\omega<\pi
$$

Problem 11.5

We find the Fourier transform of $h[n]$ and then take its complex logarithm,

$$
\begin{aligned}
h[n] & =\delta[n]+\alpha \delta\left[n-n_{0}\right] \\
H\left(e^{j \omega}\right) & =1+\alpha e^{-j \omega n_{0}} \\
\hat{H}\left(e^{j \omega}\right) & =\log \left(1+\alpha e^{-j \omega n_{0}}\right)
\end{aligned}
$$

The power series expansion for $\log (1+x)$ with $|x|<1$ is given by:

$$
\log (1+x)=\sum_{k=1}^{\infty}(-1)^{k+1} \frac{x^{k}}{k}
$$

Letting $x=\alpha e^{-j \omega n_{0}}$ and checking that $|x|=\left|\alpha e^{-j \omega n_{0}}\right|=|\alpha|<1$ as assumed, we obtain:

$$
\hat{H}\left(e^{j \omega}\right)=\sum_{k=1}^{\infty}(-1)^{k+1} \frac{\alpha^{k}}{k} e^{-j \omega k n_{0}}
$$

The complex cepstrum $\hat{h}[n]$ is found by taking the inverse Fourier transform of $\hat{H}\left(e^{j \omega}\right)$ and identifying $e^{-j \omega k n_{0}} \leftrightarrow \delta\left[n-k n_{0}\right]$:

$$
\hat{h}[n]=\sum_{k=1}^{\infty}(-1)^{k+1} \frac{\alpha^{k}}{k} \delta\left[n-k n_{0}\right]
$$

$\hat{h}[n]$ is plotted in Figure 11.5-1:

Figure 11.5-1: Complex cepstrum $\hat{h}[n]$ for an echo system.

Problem 11.6

The sequence $x[n]$ being minimum-phase means that $x[n]$ is also causal, so that $x[n]=0, n<0$. As stated in the problem, minimum phase implies that the complex cepstrum $\hat{x}[n]$ is causal, i.e. $\hat{x}[n]=0, n<0$. Thus the lower bound on the sum in equation (12.34) becomes $k=0$ (because of $\hat{x}[k]$), while the upper bound becomes $k=n$ (because of $x[n-k]$).

$$
x[n]=\sum_{k=0}^{n}\left(\frac{k}{n}\right) \hat{x}[k] x[n-k], \quad n>0
$$

Isolating the $k=n$ term from the sum and solving for $\hat{x}[n]$,

$$
\begin{aligned}
& x[n]=\hat{x}[n] x[0]+\sum_{k=0}^{n-1}\left(\frac{k}{n}\right) \hat{x}[k] x[n-k] \\
& \hat{x}[n]=\frac{x[n]}{x[0]}-\sum_{k=0}^{n-1}\left(\frac{k}{n}\right) \hat{x}[k] \frac{x[n-k]}{x[0]}, \quad n>0
\end{aligned}
$$

The equation above is a recursion formula for $\hat{x}[n], n>0$, while we know that $\hat{x}[n]=0$ for $n<0$:

$$
\hat{x}[n]= \begin{cases}0, & n<0 \\ \frac{x[n]}{x[0]}-\sum_{k=0}^{n-1}\left(\frac{k}{n}\right) \hat{x}[k] \frac{x[n-k]}{x[0]}, & n>0\end{cases}
$$

However, the recursion cannot determine $\hat{x}[0]$, so we must find it through some other means. Recall the initial-value theorem for a causal sequence $x[n]$ such that $x[n]=0$ for $n<0$:

$$
x[0]=\lim _{z \rightarrow \infty} X(z)
$$

Since $\hat{x}[n]$ is also zero for $n<0$,

$$
\hat{x}[0]=\lim _{z \rightarrow \infty} \hat{X}(z)
$$

But $\hat{X}(z)=\log X(z)$, so we have

$$
\begin{aligned}
\hat{x}[0] & =\lim _{z \rightarrow \infty} \log X(z) \\
& =\log \left(\lim _{z \rightarrow \infty} X(z)\right) \\
& =\log (x[0])
\end{aligned}
$$

Thus we can determine $\hat{x}[0]$ using only $x[0]$, so the computation is causal.
Now suppose that $\hat{x}[n]$ is known for $0 \leq n \leq n_{0}-1$. Using the recursion, we are able to calculate the next value $\hat{x}\left[n_{0}\right]$ from the known past values of $\hat{x}[n]$ and from the values of $x[n]$ for $0 \leq n \leq n_{0}$. To start the recursion, we determine $\hat{x}[0]$, which is then used to determine $\hat{x}[1]$, and so on. $\hat{x}[n]$ can therefore be recursively computed. Furthermore, the computation of $\hat{x}\left[n_{0}\right.$] for any $n_{0} \geq 0$ only involves values of $x[n]$ for $0 \leq n \leq n_{0}$, so the recursion can be implemented in a causal manner.

Problem 11.7

(a) Similar to Problem 11.2, the inverse DTFT of $\operatorname{Re}\left\{X\left(e^{j \omega}\right)\right\}$ is the even part $x_{e}[n]$ of $x[n]$.

$$
\begin{aligned}
x_{e}[n] & =\mathrm{DTFT}^{-1}[1+3 \cos \omega+\cos 3 \omega] \\
& =\delta[n]+\frac{1}{2}(3 \delta[n+1]+3 \delta[n-1]+\delta[n+3]+\delta[n-3])
\end{aligned}
$$

Since $x[n]$ is real and causal, it can be uniquely determined from its even part $x_{e}[n]$:

$$
\begin{aligned}
& x[n]=2 x_{e}[n] u[n]-x_{e}[0] \delta[n] \\
& x[n]=\delta[n]+3 \delta[n-1]+\delta[n-3]
\end{aligned}
$$

(b) Let $X\left(e^{j \omega}\right)$ and $\hat{X}\left(e^{j \omega}\right)$ denote the Fourier transforms of the sequence $x[n]$ and its complex cepstrum $\hat{x}[n] . X\left(e^{j \omega}\right)$ and $\hat{X}\left(e^{j \omega}\right)$ are related by:

$$
\hat{X}\left(e^{j \omega}\right)=\log \left|X\left(e^{j \omega}\right)\right|+j \arg \left[X\left(e^{j \omega}\right)\right]
$$

where $\arg \left[X\left(e^{j \omega}\right)\right]$ denotes the continuous unwrapped phase.
If $x_{1}[n]=x[-n]$, then $X_{1}\left(e^{j \omega}\right)=X\left(e^{-j \omega}\right)$, and

$$
\begin{aligned}
\hat{X}_{1}\left(e^{j \omega}\right) & =\log \left|X_{1}\left(e^{j \omega}\right)\right|+j \arg \left[X_{1}\left(e^{j \omega}\right)\right] \\
& =\log \left|X\left(e^{-j \omega}\right)\right|+j \arg \left[X\left(e^{-j \omega}\right)\right] \\
& =\hat{X}\left(e^{-j \omega}\right)
\end{aligned}
$$

Therefore $\hat{x}_{1}[n]=\hat{x}[-n]$ also. Statement 1 is true.
If $x[n]$ is real, then the Fourier transform magnitude $\left|X\left(e^{j \omega}\right)\right|$ is an even function of ω, while the unwrapped phase is an odd function of ω. The real part of $\hat{X}\left(e^{j \omega}\right)$, which is the logarithm of $\left|X\left(e^{j \omega}\right)\right|$, must be an even function, while the imaginary part of $\hat{X}\left(e^{j \omega}\right)$ is equal to $\arg \left[X\left(e^{j \omega}\right)\right]$ and must be an odd function. Therefore $\hat{X}\left(e^{j \omega}\right)$ is conjugate symmetric and the complex cepstrum $\hat{x}[n]$ is real.
Statement 2 is also true.

