
�

Introduction to Algorithms December 14, 2005
Massachusetts Institute of Technology 6.046J/18.410J
Professors Erik D. Demaine and Charles E. Leiserson Handout 35

Problem Set 9 Solutions

Problem 9-1. More parallel merge sort

In this problem we will improve the parallel merge-sort algorithm from lecture. The algorithm
described in class has work �(n lg n) and parallelism �(n/ lg2 n). We shall develop an algorithm
with the same work, but higher parallelism.

(a)	 Given two sorted arrays containing a total of n elements, give an algorithm to find the

median of the n elements in �(lg n) time on one processor.

Solution: The basic idea is that if you are given two arrays A and B and know
the length of each, you can check whether an element A[i] is the median in constant
time. Suppose that the median is A[i]. Since the array is sorted, it is greater than
exactly i− 1 values in array A. Then if it is the median, it is also greater than exactly
j = ∨n/2� − (i − 1) elements in B. It requires constant time to check if B[j]
A[i] � B[j + 1]. If A[i] is not the median, then depending on whether A[i] is greater
or less than B[j] and B[j + 1], you know that A[i] is either greater than or less than
the median. Thus you can binary search for A[i] in �(lg n) worst-case time. The
pseudocode is as follows:

MEDIAN-SEARCH(A[1 . . l], B[1 . .m], left, right)
1 if left > right
2 then return MEDIAN-SEARCH(B, A, max(1, ∨n/2� − l), min(m, ∨n/2�)
3 i � ≤(left + right)/2√
4 j � ∨n/2� − i
5 if (j = 0 A[i] > B[j]) and (j = m ← A[i] � B[j + 1]) ←
6 then return (A, i)	 � median = A[i]
7 elseif (j = 0 A[i] > B[j]) and j = m and A[i] > B[j + 1] ←	 �
8 then return MEDIAN-SEARCH(A, B, left, i− 1) � median < A[i]

9 else return MEDIAN-SEARCH(A, B, i + 1, right) � median > A[i]

Let the default values for left and right be such that calling MEDIAN-SEARCH(A, B)
is equivalent to

MEDIAN-SEARCH(A[1 . . l], B[1 . .m], max(1, ∨n/2� −m), min(l, ∨n/2�))

The invariant in MEDIAN-SEARCH(A, B) is that the median is always in either A[left . . right
or B. This is true for the initial call because A and B are sorted, so by the definition
of median it must be between max(1, ∨n/2� −m) and min(l, ∨n/2�), inclusive. It is

2 Handout 35: Problem Set 9 Solutions

also true the recursive calls on lines 8 and 9, since the algorithm only eliminates parts
of the array that cannot be the median by the definition of median. The recursive call
on line 2 also preserves the invariant since if left > right the median must be in B be
tween the new left and right values. When the algorithm terminates, the return value
is the median by the definition of median. This algorithm is guaranteed to terminate
because at each step right − left decreases and the median must be either in A or
B.	The asymptotic worst-case running time of MEDIAN-SEARCH is the same as for
performing two binary searches, which is �(lg n).

Alternatively, you can find the median by repeatedly comparing the median of the
two arrays and discarding the part that cannot contain the median. It runs for at most
2∨lg n� iterations because each iteration discards half of one of the input arrays. There
fore this algorithm’s running time is also �(lg n).

(b)	 Using the algorithm in part (a) as a subroutine, give a multithreaded algorithm to

merge two sorted arrays. Your algorithm should have �(n) work and �(n/ lg2 n)

parallelism. Give and solve the recurrences for work and critical-path length, and

show that the parallelism is �(n/ lg2 n), as required.

Solution:
We can write a multithreaded algorithm for merging in which the smaller and larger
halves of the sorted arrays are merged recursively in parallel:

P-MERGE(A[1 . . l], B[1 . . m], T [1 . . n])
1 if n � 0
2 then return
3 (A, k) � MEDIAN-SEARCH(A, B) � wlog assume median is in A
4 if n = 1
5 then T [1] � A[1]
6 else spawn P-MERGE(A[1 . . k − 1], B[1 . . ∨n/2� − k − 1], T [1 . . ∨n/2� − 1)
7 spawn P-MERGE(A[k . . l], B[∨n/2� − k . .m], T [∨n/2� . . n])
8 sync

This algorithm merges two sorted arrays into a buffer T . We can assume without loss
of generality that the median is in A; if it is in B, we can just swap A and B in the
remainder of the algorithm.

The work of this algorithm is T1(n) = 2T1(n/2) + �(lg n) = �(n). The critical
path length T

�
(n) = T

�
(n/2) + �(lg n) = �(lg2 n). Therefore the parallelism is

T1/T� = �(n/ lg2 n).

(c)	 Optional: Generalize the algorithm in part (a) to find an arbitrary order statistic. Using

this algorithm, describe a merge-sorting algorithm with �(n lg n) work that achieves

a parallelism of �(n/ lg n).

� � � �

�

�

�
 �

� � �

� � �

3 Handout 35: Problem Set 9 Solutions

Solution:
We first need a subroutine to find arbitrary order statistics. The following algorithm
finds kth order statistic of all the elements from two sorted arrays.

ORDER-STATISTICS(A[p..q], B[r..s], k)
1 if q � p + 1 or s � r + 1� One of the arrays has less than 3 elements
2 then Find the kth order statistic in constant time trivially and return it.
3 if k � s + q − p − r + 2� kth element is less than or equal to the median element

p+q4 then if A[
2] < B[r+s]

2
r+s5 then return ORDER-STATISTICS(A[p..q], B[r..
2], k)

p+q6 else return ORDER-STATISTICS(A[p..
2], B[r..s], k)

7 if k > s + q − p − r + 2� kth element is greater than the median element
p+q8 then if A[
2] < B[r+s]

2
p+q p+q9 then return ORDER-STATISTICS (A[
2 ..q], B[r..s], k − + p − 1)

2
r+s10 else return ORDER-STATISTICS(A[p..q], B[..s], k − r+s + r − 1)
2 2

We now use this subroutine to merge two arrays. Instead of dividing arrays into 2 sub-
arrays, we instead find

�
n−1 equally spaced order statistics (for k =

�
n, 2
�

n, . . . , (
�

n−
1)
�

n) and merge
�

n subarrays in parallel. Therefore, the critical path of the merg
ing subroutine is M

�
(n) = M

�
(
�

n) + lg n and the solution of this recurrence is
M

�
n = �(lg n). The work of the merge is M1(n) =

�
nM1(

�
n) + �(

�
n lg n),

whose solution is M1(n) = �(n). Therefore, the work of merge-sort remains �(n),
while the critical path reduces to T

�
(n) = T

�
(n/2) + �(lg n) = �(lg2 n).

