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Problem Set 3 Solutions 

Problem 31. Pattern Matching 

Principal Skinner has a problem: he is absolutely sure that Bart Simpson has plagiarized some text 
on a recent book report. One of Bart’s sentences sounds oddly familiar, but Skinner can’t quite 
figure out where it came from. Skinner decides to see if some smartalec MIT student can help 
him out. 

Skinner gives you a DVD containing the full text of the Springfield public library. The data is 
stored in a binary string T [1], T [2], . . . , T [n], which we view as an array T [1 . . n], where each 
T [i] is either 0 or 1. Skinner also gives you the quote from Bart Simpson’s book report, a shorter 
binary string P [1 . .m], again where each P [i] is either 0 or 1, and where m < n. For a binary 
string A[1 . . k] and for integers i, j with 1 ≤ i ≤ j ≤ k, we use the notation A[i . . j] to refer 
to the binary string A[i], A[i + 1], . . . , A[j], called a substring of A. The goal of this problem 
is to determine whether P is a substring of T , i.e., whether P = A[i . . j] for some i, j with 

.1 ≤ i ≤ j ≤ n

For the purpose of this problem, assume that you can manipulate O(log n)bit integers in constant 
time. For example, if x ≤ n7 and y ≤ n5, then you can calculate x + y in constant time. On the 
other hand, you may not assume that mbit integers can be manipulated in constant time, because 
m may be too large. For example, if m = Θ(log 2 n) and x and y are each mbit integers, you 
cannot calculate x + y in constant time. (In general, it is reasonable to assume that you can 
manipulate integers of length logarithmic in the input size in constant time, but larger integers 
require proportionally more time.) 

(a)	 Assume that you have a hash function h(x) that computes a hash value of the m

bit binary string x = A[i . . (i + m − 1)], for some binary string A[1 . . k] and some

1 ≤ i ≤ k− m+ 1. Moreover, assume that the hash function is perfect: if x = y, then

h(x) = h(y). Assume that you can calculate the hash function in O(m) time. Show 
how to determine whether P is a substring of T in O(mn) time. 

Solution: We compute the hash of the pattern string, and compare it to the hash of all 
possible lengthm substrings of A, i.e., compare h(P ) to h(A[i . . (i + m − 1)]), for 
1 ≤ i < n− m+ 1. Since the hash function is perfect, h(P ) = h(A[i . . (i+ m− 1)]) if 
and only if P = A[i, . . (i+ m− 1)]. There are O(n) hash functions to compute, O(n) 
comparisons of hash values, and each computation and comparison requires O(m) 
time, for a total running time of O(mn). 
Note that because calculation of the hash function takes O(m) time, this algorithm is 
not asymptotically any better than simply comparing the substrings directly. This part 
is designed as motivation for the rest of the problem. 
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(b) Consider the following family of hash functions hp, parameterized by a prime num
4ber p in the range [2, cn] for some constant c > 0: 

hp(x) = x (mod p) . 

Assume that p is chosen uniformly at random among all prime numbers in the range 
[2, cn4]. Fix some i with 1 ≤ i ≤ n − m + 1, and let x = T [i . . (i + m − 1)]. Show 
that, for an appropriate choice of c, and if x = P , then 

� � 1 
Pr hp(x) = hp(P ) . 
p 

≤ 
n 

Hint: Recall the following two numbertheoretic facts: (1) an integer x has at most lg x 
prime factors; (2) the Prime Number Theorem: there are Θ(x/ lg x) prime numbers in 
the range [2, x]. 

Solution: Both x and P have the same hash value only if (x−P ) = 0 (mod p), i.e., 
if p is a factor of x− P . Since x and P are both mbit numbers, (x− P ) has at most 
m + 1 ≤ n bits. Since (x− P ) ≤ 2n , (x− P ) has at most lg 2n = n prime factors. 

4cnBy the Prime Number Theorem, there are at least Ω 
lg cn4 primes in the interval 

[2, cn4]. � �

n n(lg c + 4 lg n)


Pr{hp(x) = h � � = O .
4cn cn4p(P )} ≤ 

Ω 
lg cn4 

For suitably chosen constants, we can show that this probability is O(1/n).


A more formal argument proceeds as follows: There exists constants n� and c� such

4that for all n > n�, the number of primes in the interval [2, cn ] is at least c� (cn4/ lg cn4). 

Therefore, for all n > n�, the probability of choosing a p that divides (x − P ) is at 
most 

n n(lg c + 4 lg n)
Pr{hp(x) = h � � = .

4 4cn c�cn
p(P )} ≤ 

c� 
lg cn4 

It is straightforward to verify that lg c + 4 lg n < n if n ≥ max{2 lg c, 64}.


Therefore, if we choose c > 1/c� and n ≥ max{n�, 2 lg c, 64}, we have


1 1 1 
Pr{hp(x) = h .p(P )} ≤ 

c�cn2 
≤ 

n2 
≤ 

n 

(c) How long does it take to calculate hp(x), as defined in part (b)? Hint: Notice that x is 
an mbit integer, and hence cannot be manipulated in constant time. 
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Solution: Because p ≤ cn4, we know that p has O(lg n) bits. Assuming that we can 
manipulate O(lg n)bit integers in constant time, it is possible to compute w (mod p) 
in constant time if w also has O(lg n) bits. 

The computation becomes slightly more complicated, however, if x is an mbit num
ber and m = ω(lg n). Instead, we compute hp(x) in O(m) time by incrementally 
computing the hash functions of prefixes of x. 

Let y be the k mostsignificant bits of the string x = A[1 . .m], and suppose we have 
already computed hp(y) = y (mod p). Then, with a constant number of operations, 
we can compute the hash function of z, the (k + 1) most significant bits of x. 

Interpreting the string z = A[1 . . (k+ 1)] as a number, we have that z = 2y+ A[k+ 1]. 
Therefore, hp(z) is just 

hp(z) = (2y + A[k + 1]) (mod p) = (2hp(y) + A[k + 1]) (mod p). 

Given hp(y), computing hp(z) requires only three additional integer operations: a 
single leftshift, addition, and a division. Thus, we perform a constant amount of 
work for every bit of x. 

The purpose of this part is to realize that hp(x) can not be computed in constant time, 
and therefore the algorithm in part (d) represents an asymptotic improvement. An 
answer of O(m) is acceptable. Note that we could do this computation faster by 
dividing x into m/(c lg n) digits, each c lg n bits long. The previous algorithm could 
then be modified to calculate hp(x) in O(m/ lg n) time. 

(d)	 For 1 ≤ i ≤ n− m, show how to calculate hp(A[(i + 1) . . (i + m)]) in constant time

if you already know the value of hp(A[i . . (i + m− 1)]), as defined in part (b)?


Solution: Interpreting the strings as binary numbers, we have that 

A[(i + 1) . . (i + m)] = 2 A[i . . (i + m− 1)] − 2m−1A[i] + A[i + m]. 

Taking both sides of this equation modulo p, we get 

hp(A[(i+1) . . (i+m)]) = 2 hp(A[i . . (i + m− 1)]) − 2m−1A[i] + A[i + m] (mod p). 

Assume that we have already precomputed the value 2m−1 (mod p) and stored this 
value in some variable α. To compute hp(A[(i + 1) . . (i + m)]), we calculate αA[i] 
(mod p), and subtract this value from hp(A[i . . (i + m − 1)]). Then we leftshift by 
1 bit to multiply by 2, add in the bit A[i + m], and compute the remainder modulo 
p. Since our hash values are O(lg n)bit integers, all these operations can be done in 
constant time. 
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(e)	 Using the family of hash functions from part (b), devise an algorithm to determine

whether P is a substring of T in O(n) expected time.


Solution: We can use the same algorithm as in part (a), of comparing the hash of 
P with the hash functions of all lengthm substrings of A until we find a match or 
until we have exhausted the text A. We use a hash function hp, selected from the hash 
family described in part (b), and we use the method from part (d) to incrementally 
compute the hash functions. Since hp is not a perfect hash function, if we discover 
that the hash values match, we then compare the two strings to see if they are equal. 

To analyze the runtime, we analyze two separate costs: the cost to compute the hash 
function for each substring, and the cost of comparing the substrings when the hash 
values match. We show that both these expected runtimes are O(n), giving us the 
desired result. 

Computing the first hash function, hp(A[1 . .m − 1]) requires O(m) time. Using the 
method from part (d), however, computing the hash values of all lengthm strings 
requires a total of O(m + n) = O(n) time. 

If the hash values match, the cost of comparing two lengthmsubstrings is O(m). Let 
Xi	 be an indicator random variable that is 1 if we have a false positive at index i, 
i.e., if hp(P ) = hp(A[i . . (i + m − 1)]), but P = A[i, . . (i + m − 1)]. By part (b), 
E[Xi] < 1/n. Then the expected total cost of comparing substrings for false positives 
is 

n−m+1

E[Xi]O(m) = O(m) = O(n). 
i=1 

The cost of comparing substrings for a match is O(m) = O(n), because the algorithm 
stops after finding one match. 

Problem 32. 2Universal Hashing 

Let H be a class of hash functions in which each h ∈ Hmaps the universe U of keys to {0, 1, . . . ,m− 1}. 
We say that H is 2universal if, for every fixed pair �x, y� of keys where x = y, and for any h�	

2chosen uniformly at random from H, the pair �h(x), h(y)� is equally likely to be any of the m
pairs of elements from {0, 1, . . . ,m− 1}. (The probability is taken only over the random choice 
of the hash function.) 

(a)	 Show that, if H is 2universal, then it is universal. 

Solution: If H is 2universal, then for every pair of distinct keys x and y, and for 
every i ∈ {0, 1, . . . m− 1}, 

1 
Pr	 [�h(x), h(y)� = �i, i�] = 

mh∈H	 2 
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There are exactly m possible ways for to have x and y collide, i.e., h(x) = h(y) = i 
for i ∈ {0, 1, . . . m− 1}. Thus, 

m�−1�	 � 
m 1 

Pr [h(x) = h(y)] = Pr [�h(x), h(y)� = �i, i�] = = . 
m mh∈H 

i=0 
h∈H	 2 

Therefore, by definition, H is universal. 

(b)	 Construct a specific family H that is universal, but not 2universal, and justify your

answer. Write down the family as a table, with one column per key, and one row per

function. Try to make m, |H , and U as small as possible.
| | |
Hint: There is an example with m, |H , and U all less than 4. | | | 

Solution: We can find an example m = |H| = U = 2.| |
On a universe U = {x, y}, consider the following family H: 

x y 
h1 0 0 
h2 1 0 

If we chose a random hash function from H, the probability that two keys x and y 
collide is the probability of choosing h1, or 1/m = 1/2. Thus H is a universal hash 
family. 

On the other hand, with a 2universal hash family, for a randomly chosen hash func
tion h, all the possible pairs of �h(x), h(y)�, i.e., �0, 0�, �0, 1�, �1, 0�, �1, 1� must be 
equally likely. In this example, �h(x), h(y)� never equals �0, 1� or �1, 1�, so H is not 
2universal. 

(c)	 Suppose that an adversary knows the hash family H and controls the keys we hash, 
and the adversary wants to force a collision. In this problem part, suppose that H is 
universal. The following scenario takes place: we choose a hash function h randomly 
from H, keeping it secret from the adversary, and then the adversary chooses a key x 
and learns the value h(x). Can the adversary now force a collision? In other words, 
can it find a y = x such that h(x) =h(y) with probability greater than 1/m? 

If so, write down a particular universal hash family in the same format as in part (b),

and describe how an adversary can force a collision in this scenario. If not, prove that

the adversary cannot force a collision with probability greater than 1/m.


Solution: By adding one extra key to our previous example, we can construct a sce

nario where the adversary can force a collision.


On a universe U = {x, y, z}, consider the following family H:
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x y z 
h1 0 0 1 
h2 1 0 1 

H is still a universal hash family: x and y collide with probability 1/2, x and z collide

with probability 1/2, and y and z collide with probability 0< 1/2.


The adversary can determine whether we have selected h1 or h2 by giving us x to hash.

If h(x) = 0, then we have chosen h1, and the adversary then gives us y. Otherwise, if

h(x) = 1, we have chosen h2 and the adversary gives us z.


(d)	 Answer the question from part (c), but supposing that H is 2universal, not just uni
versal. 

Solution: With a 2universal hash family, the adversary cannot force a collision 
with probability better than 1/m. Essentially, knowing h(x) gives the adversary no 
information about h(y) for any other key y. 

We can prove this formally using conditional probabilities. Suppose we choose a 
random hash function h ∈ H, and then the adversary forces us to hash some key x 
and learns the value h(x) = X. Then the adversary gives us any key y = x, hoping to 
cause a collision. By definition of 2universality, we have for any x and y with x = y, 

Pr	 [h(y) = h(x) | h(x) = X] = 
Prh∈H [h(y) = h(x) and h(x) =X] 1/m2 1 

= = . 
Prh∈H [h(x) = X] 1/m mh∈H 

Therefore, no matter which x the adversary chooses first, and which h(x) = X value 
it learns, the probability of any particular y colliding with x is only 1/m. 


