Problem Set 1 Solutions

Problem 1-1. Asymptotic Notation

For each of the following statements, decide whether it is **always true**, **never true**, or **sometimes true** for asymptotically nonnegative functions f and g. If it is **always true** or **never true**, explain why. If it is **sometimes true**, give one example for which it is true, and one for which it is false.

(a) $f(n) = O(f(n)^2)$

Solution: Sometimes true: For f(n) = n it is true, while for f(n) = 1/n it is not true. (The statement is always true for $f(n) = \Omega(1)$, and hence for most functions with which we will be working in this course, and in particular all time and space complexity functions).

(b) $f(n) + g(n) = \Theta(\max(f(n), g(n)))$

Solution: Always true: $\max(f(n), g(n)) \le f(n) + g(n) \le 2 \max(f(n), g(n)).$

(c) $f(n) + O(f(n)) = \Theta(f(n))$

Solution: Always true: Consider f(n) + g(n) where g(n) = O(f(n)) and let c be a constant such that $0 \le g(n) < cf(n)$ for large enough n. Then $f(n) \le f(n) + g(n) \le (1+c)f(n)$ for large enough n.

(d) $f(n) = \Omega(g(n))$ and f(n) = o(g(n)) (note the little-o)

Solution: Never true: If $f(n) = \Omega(g(n))$ then there exists positive constant c_{Ω} and n_{Ω} such that for all $n > n_{\Omega}$, $cg(n) \le f(n)$. But if f(n) = o(g(n)), then for any positive constant c, there exists $n_o(c)$ such that for all $n > n_o(c)$, f(n) < cg(n). If $f(n) = \Omega(g(n))$ and f(n) = o(g(n)), we would have that for $n > \max(n_{\Omega}, n_o(c_{\Omega}))$ it should be that $f(n) < c_{\Omega}g(n) \le f(n)$ which cannot be.

(e) $f(n) \neq O(g(n))$ and $g(n) \neq O(f(n))$

Solution: Sometimes true: For f(n) = 1 and $g(n) = ||n * \sin(n)||$ it is true, while for any f(n) = O(g(n)), e.g. f(n) = g(n) = 1, it is not true.

Problem 1-2. Recurrences

Give asymptotic upper and lower bounds for T(n) in each of the following recurrences. Assume that T(n) is constant for $n \leq 3$. Make your bounds as tight as possible, and justify your answers.

(a) $T(n) = 2T(n/3) + n \lg n$

Solution: By Case 3 of the Master Method, we have $T(n) = \Theta(n \lg n)$.

(b) $T(n) = 3T(n/5) + \lg^2 n$

Solution: By Case 1 of the Master Method, we have $T(n) = \Theta(n^{\log_5(3)})$.

(c) $T(n) = T(n/2) + 2^n$

Solution: Case 3 of master's theorem, (check that the regularity condition holds), $\Theta(2^n)$.

(d) $T(n) = T(\sqrt{n}) + \Theta(\lg \lg n)$

Solution: Change of variables: let $m = \lg n$. Recurrence becomes $S(m) = S(m/2) + \Theta(\lg m)$. Case 2 of master's theorem applies, so $T(n) = \Theta((\lg \lg n)^2)$.

(e)
$$T(n) = 10T(n/3) + 17n^{1.2}$$

Solution: Since $\log_3 9 = 2$, so $\log_3 10 > 2 > 1.2$. Case 1 of master's theorem applies, $\Theta(n^{\log_3 10})$.

(f) $T(n) = 7T(n/2) + n^3$

Solution: By Case 3 of the Master Method, we have $T(n) = \Theta(n^3)$.

(g) $T(n) = T(n/2 + \sqrt{n}) + \sqrt{6046}$

Solution: By induction, T(n) is a monotonically increasing function. Thus, for large enough n, $T(n/2) \leq T(n/2 + \sqrt{n}) \leq T(3n/4)$. At each stage, we incur constant cost $\sqrt{6046}$, but we decrease the problem size to atleast one half and at most three-quarters. Therefore $T(n) = \Theta(\lg n)$.

(h) $T(n) = T(n-2) + \lg n$

Solution: $T(n) = \Theta(n \log n)$. This is $T(n) = \sum_{i=1}^{n/2} \lg 2i \ge \sum_{i=1}^{n/2} \lg i \ge (n/4)(\lg n/4) = \Omega(n \lg n)$. For the upper bound, note that $T(n) \le S(n)$, where $S(n) = S(n-1) + \lg n$, which is clearly $O(n \lg n)$.

(i) $T(n) = T(n/5) + T(4n/5) + \Theta(n)$

Solution: Master's theorem doesn't apply here. Draw recursion tree. At each level, do $\Theta(n)$ work. Number of levels is $\log_{5/4} n = \Theta(\lg n)$, so guess $T(n) = \Theta(n \lg n)$ and use the substitution method to verify guess.

In the $f(n) = \Theta(n)$ term, let the constants for $\Omega(n)$ and O(n) be n_0, c_0 and c_1 , respectively. In other words, let for all $n \ge n_0$, we have $c_0 n \le f(n) \le c_1 n$.

• First, we show T(n) = O(n).

For the base case, we can choose a sufficiently large constant d_1 such that $T(n) < d_1 n \lg n$.

For the inductive step, assume for all k < n, that $T(k) < d_1 n \lg n$. Then for k = n, we have

$$T(n) \leq T\left(\frac{n}{5}\right) + T\left(\frac{4n}{5}\right) + c_1n$$

$$\leq d_1\frac{n}{5}\lg\left(\frac{n}{5}\right) + d_1\frac{4n}{5}\lg\left(\frac{4n}{5}\right) + c_1n$$

$$= d_1n\lg n - \frac{d_1n}{5}\lg 5 - \frac{4d_1n}{5}\lg\left(\frac{5}{4}\right) + c_1n$$

$$= d_1n\lg n - n\left(\left(\frac{\lg 5 + 4\lg(5/4)}{5}\right)d_1 - c_1\right).$$

The residual is negative as long as we pick $d_1 > 5c_1/(\lg 5 + 4\lg(5/4))$. Therefore, by induction, $T(n) = O(n \lg n)$.

• To show that $T(n) = \Omega(n)$, we can use almost the exact same math. For the base case, we choose a sufficiently small constant d_0 such that $T(n) > d_0 n \lg n$.

For the inductive step, assume for all k < n, that $T(k) > d_0 n \lg n$. Then, for k = n, we have

$$T(n) \geq T\left(\frac{n}{5}\right) + T\left(\frac{4n}{5}\right) + c_0 n$$

$$\geq d_0 \frac{n}{5} \lg\left(\frac{n}{5}\right) + d_0 \frac{4n}{5} \lg\left(\frac{4n}{5}\right) + c_0 n$$

$$= d_0 n \lg n + n \left(c_0 - \left(\frac{\lg 5 + 4 \lg(5/4)}{5}\right) d_0\right)$$

The residual is positive as long as $d_0 < 5c_0/(\lg 5 + 4\lg(5/4))$. Thus, $T(n) = \Omega(n \lg n)$.

(j) $T(n) = \sqrt{n} T(\sqrt{n}) + 100n$

Solution: Master's theorem doesn't apply here directly. Pick S(n) = T(n)/n. The recurrence becomes $S(n) = S(\sqrt{n}) + 100$. The solution of this recurrece is $S(n) = \Theta(\lg \lg n)$. (You can do this by a recursion tree, or by substituting $m = \lg n$ again.) Therefore, $T(n) = \Theta(n \lg \lg n)$.

Problem 1-3. Unimodal Search

An array A[1..n] is *unimodal* if it consists of an increasing sequence followed by a decreasing sequence, or more precisely, if there is an index $m \in \{1, 2, ..., n\}$ such that

- A[i] < A[i+1] for all $1 \le i < m$, and
- A[i] > A[i+1] for all $m \le i < n$.

In particular, A[m] is the maximum element, and it is the unique "locally maximum" element surrounded by smaller elements (A[m-1] and A[m+1]).

(a) Give an algorithm to compute the maximum element of a unimodal input array A[1..n] in O(lg n) time. Prove the correctness of your algorithm, and prove the bound on its running time.

Solution: Notice that by the definition of unimodal arrays, for each $1 \le i < n$ either A[i] < A[i+1] or A[i] > A[i+1]. The main idea is to distinguish these two cases:

- 1. By the definition of unimodal arrays, if A[i] < A[i+1], then the maximum element of A[1..n] occurs in A[i+1..n].
- 2. In a similar way, if A[i] > A[i+1], then the maximum element of A[1..n] occurs in A[1..i].

This leads to the following divide and conquer solution (note its resemblance to binary search):

```
1 \quad a, b \leftarrow 1, n
2 \quad \text{while } a < b
3 \quad \text{do } mid \leftarrow \lfloor (a+b)/2 \rfloor
4 \quad \text{if } A[mid] < A[mid+1]
5 \quad \text{then } a \leftarrow mid+1
6 \quad \text{if } A[mid] > A[mid+1]
7 \quad \text{then } b \leftarrow mid
8 \quad \text{return } A[a]
```

The precondition is that we are given a unimodal array A[1..n]. The postcondition is that A[a] is the maximum element of A[1..n]. For the loop we propose the invariant "The maximum element of A[1..n] is in A[a..b] and $a \le b$ ".

When the loop completes, $a \ge b$ (since the loop condition failed) and $a \le b$ (by the loop invariant). Therefore a = b, and by the first part of the loop invariant the maximum element of A[1..n] is equal to A[a].

We use induction to prove the correctness of the invariant. Initially, a = 1 and b = n, so, the invariant trivially holds. Suppose that the invariant holds at the start of the loop. Then, we know that the maximum element of A[1..n] is in A[a..b]. Notice that A[a..b] is unimodal as well. If A[mid] < A[mid + 1], then the maximum element of A[a..b] occurs in A[mid+1..b] by case 1. Hence, after $a \leftarrow mid + 1$ and b remains unchanged in line 4, the maximum element is again in A[a..b]. The other case is symmetric.

To complete the proof, we need to show that the second part of the invariant $a \le b$ is also true. At the start of the loop a < b. Therefore, $a \le \lfloor (a+b)/2 \rfloor < b$. This means that $a \le mid < b$ such that after line 4 or line 5 in which a and b get updated $a \le b$ holds once more.

The divide and conquer approach leads to a running time of $T(n) = T(n/2) + \Theta(1) = \Theta(\lg n)$.

A polygon is **convex** if all of its internal angles are less than 180° (and none of the edges cross each other). Figure 1 shows an example. We represent a convex polygon as an array V[1 ...n] where each element of the array represents a vertex of the polygon in the form of a coordinate pair (x, y). We are told that V[1] is the vertex with the minimum x coordinate and that the vertices V[1...n] are ordered counterclockwise, as in the figure. You may also assume that the x coordinates of the vertices are all distinct, as are the y coordinates of the vertices.

(b) Give an algorithm to find the vertex with the maximum x coordinate in $O(\lg n)$ time.

Solution: Notice that the x-coordinates of the vertices form a unimodal array and we can use part (a) to find the vertex with the maximum x-coordinate in $\Theta(\lg n)$ time.

(c) Give an algorithm to find the vertex with the maximum y coordinate in $O(\lg n)$ time.

Solution: After finding the vertex V[max] with the maximum x-coordinate, notice that the y-coordinates in V[max], V[max + 1], ..., V[n - 1], V[n], V[1] form a unimodal array and the maximum y-coordinate of V[1..n] lies in this array. Again part (a) can be used to find the vertex with the maximum y-coordinate. The total running time is $\Theta(\lg n)$.

Figure 1: An example of a convex polygon represented by the array V[1..9]. V[1] is the vertex with the minimum *x*-coordinate, and V[1..9] are ordered counterclockwise.