Approximation Algorithms: Traveling Salesman Problem

In this recitation, we will be studying the Traveling Salesman Problem (TSP): Given an undirected graph $G(V, E)$ with non-negative integer $\operatorname{cost} c(u, v)$ for each edge $(u, v) \in E$, find the Hamiltonian cycle with minimum cost.

1 Metric TSP

TSP is an NP-complete problem, and therefore there is no known efficient solution. In fact, for the general TSP problem, there is no good approximation algorithm unless $P=N P$. There is, however, a known 2-approximation for the metric TSP. In metric TSP, the cost function satisfies the triangular inequality:

$$
c(u, w) \leq c(u, v)+c(v, w) \forall u, v, w \in V
$$

This also implies that any shortest paths satisfy the triangular inequality as well: $d(u, w) \leq$ $d(u, v)+d(v, w)$. The metric TSP is still an NP-complete problem, even with this constraint.

2 MST Approximation Algorithm

When you remove an edge from a Hamiltonian cycle, you get a spanning tree. We know how to find minimum spanning trees efficiently. Using this idea, we create an approximation algorithm for minimum weight Hamiltonian cycle.

The algorithm is as follows: Find the minimum spanning tree T of G rooted at some node r. Let H be the list of vertices visited in pre-order tree walk of T starting at r. Return the cycle that visits the vertices in the order of H.

2.1 Approximation Ratio

We will now show that the MST-based approximation is a 2-approximation for the metric TSP problem. Let H^{*} be the optimal Hamiltonian cycle of graph G, and let $c(R)$ be the total weight of all edges in R. Furthermore, let $c(S)$ for a list of vertices S be the total weight of the edges needed to visit all vertices in S in the order they appear in S.

Lemma $1 c(T)$ is a lower bound of $c\left(H^{*}\right)$.
Proof. Removing any edge from H^{*} results in a spanning tree. Thus the weight of MST must be smaller than that of H^{*}.

Lemma $2 c\left(S^{\prime}\right) \leq c(S)$ for all $S^{\prime} \subset S$.

Proof. Consider $S^{\prime}=S-\{v\}$. WLOG, assume that vertex v was removed from a subsequence u, v, w of S. Then in S^{\prime}, we have $u \rightarrow w$ rather than $u \rightarrow v \rightarrow w$. By triangular inequality, we know that $c(u, w) \leq c(u, v)+c(v, w)$. Therefore $c(S)$ is non-increasing, and $c\left(S^{\prime}\right) \leq c(S)$ for all $S^{\prime} \subset S$.

Consider the walk W performed by traversing the tree in pre-order. This walk traverses each edge exactly twice, meaning $c(W)=2 c(T)$. We also know that removing duplicates from W results in H. By Lemma 1, we know that $c(T) \leq c\left(H^{*}\right)$. By Lemma 2, we know that $c(H) \leq$ $c(W)$. Putting it all together, we have $c(H) \leq c(W)=2 c(T) \leq 2 c\left(H^{*}\right)$.

3 Christofides Algorithm

We can improve on the MST algorithm by slightly modifying the MST. Define an Euler tour of a graph to be a tour that visits every edge in the graph exactly once.

As before, find the minimum spanning tree T of G rooted at some node r. Compute the minimum cost perfect matching M of all the odd degree vertices, and add M to T to create T^{\prime}. Let H be the list of vertices of Euler tour of T^{\prime} with duplicate vertices removed. Return the cycle that visits vertices in the order of H.

3.1 Approximation Ratio

We will show that the Christofies algorithm is a $\frac{3}{2}$-approximation algorithm for the metric TSP problem. We first note that an Euler tour of $T^{\prime}=T \cup M$ exists because all vertices are of even degree. We now bound the cost of the matching M.

Lemma $3 c(M) \leq \frac{1}{2} c\left(H^{*}\right)$.
Proof. Consider the optimal solution H^{\prime} to the TSP of just the odd degree vertices of T. We can break H^{\prime} to two perfect matchings M_{1} and M_{2} by taking every other edge. Because M is the minimum cost perfect matching, we know that $c(M) \leq \min \left(c\left(M_{1}\right), c\left(M_{2}\right)\right)$. Furthermore, because H^{\prime} only visits a subset of the graph, $c\left(H^{\prime}\right) \leq c\left(H^{*}\right)$. Therefore, $2 c(M) \leq c\left(H^{\prime}\right) \leq$ $c\left(H^{*}\right) \Rightarrow c(M) \leq \frac{1}{2} c\left(H^{*}\right)$.

The cost of Euler tour of T^{\prime} is $c(T)+c(M)$ since it visits all edges exactly once. We know that $c(T) \leq c\left(H^{*}\right)$ as before (Lemma 1). Using Lemma 3 along with Lemma 1, we get $c(T)+c(M) \leq$ $c\left(H^{*}\right)+\frac{1}{2} c\left(H^{*}\right)=\frac{3}{2} c\left(H^{*}\right)$. Finally, removing duplicates further reduces the cost by triangular inequality. Therefore, $c(H) \leq c\left(T^{\prime}\right)=c(T)+c(M) \leq \frac{3}{2} c\left(H^{*}\right)$.

MIT OpenCourseWare
http://ocw.mit.edu

6.046J / 18.410J Design and Analysis of Algorithms

Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

