
Design and Analysis of Algorithms April 22, 2015 
Massachusetts Institute of Technology 
Profs. Erik Demaine, Srini Devadas and Nancy Lynch Recitation 9 

Approximation Algorithms: Traveling Salesman Problem 

In this recitation, we will be studying the Traveling Salesman Problem (TSP): Given an undi
rected graph G(V, E) with non-negative integer cost c(u, v) for each edge (u, v) ∈ E, find the 
Hamiltonian cycle with minimum cost. 

1 Metric TSP 
TSP is an NP-complete problem, and therefore there is no known efficient solution. In fact, for 
the general TSP problem, there is no good approximation algorithm unless P = NP . There is, 
however, a known 2-approximation for the metric TSP. In metric TSP, the cost function satisfies 
the triangular inequality: 

c(u, w) ≤ c(u, v) + c(v, w)∀u, v, w ∈ V. 

This also implies that any shortest paths satisfy the triangular inequality as well: d(u, w) ≤ 
d(u, v) + d(v, w). The metric TSP is still an NP-complete problem, even with this constraint. 

2 MST Approximation Algorithm 
When you remove an edge from a Hamiltonian cycle, you get a spanning tree. We know how to 
find minimum spanning trees efficiently. Using this idea, we create an approximation algorithm 
for minimum weight Hamiltonian cycle. 

The algorithm is as follows: Find the minimum spanning tree T of G rooted at some node r. 
Let H be the list of vertices visited in pre-order tree walk of T starting at r. Return the cycle that 
visits the vertices in the order of H . 

2.1 Approximation Ratio 
We will now show that the MST-based approximation is a 2-approximation for the metric TSP 
problem. Let H∗ be the optimal Hamiltonian cycle of graph G, and let c(R) be the total weight of 
all edges in R. Furthermore, let c(S) for a list of vertices S be the total weight of the edges needed 
to visit all vertices in S in the order they appear in S. 

Lemma 1 c(T ) is a lower bound of c(H∗). 

Proof. Removing any edge from H∗ results in a spanning tree. Thus the weight of MST must be 
smaller than that of H∗ . 

Lemma 2 c(S/) ≤ c(S) for all S/ ⊂ S. 

6.046J/18.410J 



2 Recitation 9: Approximation Algorithms: Traveling Salesman Problem 

Proof. Consider S / = S − {v}. WLOG, assume that vertex v was removed from a subsequence 
u, v, w of S. Then in S /, we have u → w rather than u → v → w. By triangular inequality, we 
know that c(u, w) ≤ c(u, v) + c(v, w). Therefore c(S) is non-increasing, and c(S /) ≤ c(S) for all 
S / ⊂ S. 

Consider the walk W performed by traversing the tree in pre-order. This walk traverses each 
edge exactly twice, meaning c(W ) = 2c(T ). We also know that removing duplicates from W 
results in H . By Lemma 1, we know that c(T ) ≤ c(H∗). By Lemma 2, we know that c(H) ≤ 
c(W ). Putting it all together, we have c(H) ≤ c(W ) = 2c(T ) ≤ 2c(H∗). 

3 Christofides Algorithm 
We can improve on the MST algorithm by slightly modifying the MST. Define an Euler tour of a 
graph to be a tour that visits every edge in the graph exactly once. 

As before, find the minimum spanning tree T of G rooted at some node r. Compute the 
minimum cost perfect matching M of all the odd degree vertices, and add M to T to create T /. Let 
H be the list of vertices of Euler tour of T / with duplicate vertices removed. Return the cycle that 
visits vertices in the order of H . 

3.1 Approximation Ratio 
We will show that the Christofies algorithm is a 

2
3 -approximation algorithm for the metric TSP 

problem. We first note that an Euler tour of T / = T ∪ M exists because all vertices are of even 
degree. We now bound the cost of the matching M . 

Lemma 3 c(M) ≤ 1
2 c(H

∗). 

Proof. Consider the optimal solution H / to the TSP of just the odd degree vertices of T . We 
can break H / to two perfect matchings M1 and M2 by taking every other edge. Because M is 
the minimum cost perfect matching, we know that c(M) ≤ min(c(M1), c(M2)). Furthermore, 
because H / only visits a subset of the graph, c(H /) ≤ c(H∗). Therefore, 2c(M) ≤ c(H /) ≤ 
c(H∗) ⇒ c(M) ≤ 1 c(H∗).

2 
The cost of Euler tour of T / is c(T )+ c(M) since it visits all edges exactly once. We know that 

c(T ) ≤ c(H∗) as before (Lemma 1). Using Lemma 3 along with Lemma 1, we get c(T )+ c(M) ≤ 
c(H∗) + 

2
1 c(H∗) = 

2
3 c(H∗). Finally, removing duplicates further reduces the cost by triangular 

inequality. Therefore, c(H) ≤ c(T /) = c(T ) + c(M) ≤ 3
2 c(H

∗). 



MIT OpenCourseWare
http://ocw.mit.edu

6.046J / 18.410J Design and Analysis of Algorithms
Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms



