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Network Flow and Matching
 

Edmonds-Karp Analysis 

Recall: Edmonds-Karp is an efficient implementation of the Ford-Fulkerson method which selects 
shortest augmenting paths in the residual graph. It assigns a weight of 1 to every edge and runs 
BFS to find a breadth-first shortest path from s to t in Gf . 

Monotonicity Lemma 

Lemma. Let δ(v) = δf (s, v) be the breadth-first distance from s to v in Gf . During the Edmonds-
Karp algorithm, δ(v) increases monotonically. 

Proof: 

Suppose that augmenting a flow f on G produces a new flow f /. Let δ/(v) = δf ' (s, v). We will 
show that δ/(v) ≥ δ(v) by induction on δ/(v). 

Base Case: δ/(v) = 0. This implies that v = s, and since δ(s) = 0 and distance can never 
be negative, it follows δ/(s) ≥ δ(s). 

Inductive Case: Assume inductive hypothesis holds for any u where δ/(u) < δ/(v). We will 
show that it is also hods for v. 

Consider a breadth-first path s → · · · → u → v in Gf ' . We must have δ/(v) = δ/(u) + 1, 
since subpaths of shortest paths are also shortest paths. Also note that by our inductive assumption 
δ/(u) ≥ δ(u), because δ/(u) < δ/(v). Certainly, (u, v) ∈ Ef ' . We will now prove that δ/(v) ≥ δ(v) 
in both cases where (u, v) ∈ Ef and (u, v)  ∈ Ef . 

Case 1: (u, v) ∈ Ef . Here we have: 

δ(v) ≤ δ(u) + 1 triangle inequality 
≤ δ/(u) + 1 inductive assumption (1) 
= δ/(v) breadth-first path 

Therefore δ/(v) ≥ δ(v) and monotonicity of δ(v) is established. 

6.046J/18.410J 



2 Recitation 7: Network Flow and Matching 

Case 2: (u, v)  ∈ Ef . Here, the only way (u, v) ∈ Ef ' is if the augmenting path p that produced f / 

from f must have included (v, u). Moreover, p is a breadth first path in Gf : 

p = s → · · · → v → u 

Thus, we have: 

δ(v) = δ(u) − 1 breadth-first path 
≤ δ/(u) − 1 inductive assumption 

(2) 
= δ/(v) − 2 breadth-first path 
< δ/(v) 

thereby establishing monotonicity for this case, too. D 

Counting Flow Augmentations
 

Theorem. The number of flow augmentations in the Edmonds-Karp algorithm is O(V E).
 

Proof: 

For an augmenting path p, define cf (p) = min{cf (u, v) ∈ p}. 

Let p be an augmenting path, and suppose that we have cf (p) = cf (u, v) for edge (u, v) ∈ p. Then, 
we say that (u, v) is critical, and it disappears from the residual graph after flow augmentation. 
This is because during augmentation, the residual capacity of every edge in p decreases by cf (p) 
as that much new flow is pushed through the augmenting path. And since cf (u, v) − cf (p) = 0, 
the edge disappears after augmentation. 

The first time an edge (u, v) is critical, we have δ(v) = δ(u)+1 since p is a breadth-first path. After 
the augmentation, we must wait until (v, u) is on an augmenting path before (u, v) can be critical 
again. Let δ/ be the distance function in the residual network when (v, u) is on an augmenting path. 
Then, we have: 

δ/(u) = δ/(v) + 1 breadth-first path 
≥ δ(v) + 1 monotonicity (3) 
= δ(u) + 2 breadth-first path 

Hence between each occurrence of an edge (u, v) as critical, δ(u) increases by at least 2. And since 
δ(u) starts out non-negative and can be at most |V | − 1 until the vertex is unreachable, each edge 
can be critical O(V ) times. And since the residual graph contains O(E) edges, the total number of 
flow augmentations is O(V E). D 

Corollary. The Edmonds-Karp maximum-flow algorithm runs in O(V E2) time. 

Proof: Breadth-First Search runs in O(E) time, and there are O(V E) augmentations. All other 
bookkeeping is O(V ) per augmentation. 
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Applications of Network Flow 

Vertex Cover 

Given an undirected graph G = (V, E), we say that a set S ⊆ V of vertices covers G, if for every 
edge (u, v) ∈ E, S contains either u or v. The Vertex Cover problem is now to find S such that S 
covers G and |S| is minimal. 

Vertex Cover is NP-Hard in general graphs but polynomial time solvable in bipartite graphs. 

Bipartite Vertex Cover 

Given a bipartite graph G = (L U R, E ⊆ L × R), find the set S such that S covers G and |S| is 
minimal. 

Solution: Given G, define the following Flow Network H: 

• Create a new source vertex s and add edges of capacity 1 from s to every vertex in L 

• Create a new sink vertex t and add edges of capacity 1 from every vertex in R to t 

• Direct all edges in E from L to R and assign each edge ∞ capacity 

Run Maximum Flow in H and return the value. 

For example, consider the following graph H constructed from G = ({L1, L2, L3}U{R1, R2, R3}, E) 
where E consists of the shown edges: 

s 

L1 

L2 

L3 

R1 

R2 

R3 

t 

1 

1 

1 

1 

1 

1 

∞ 

∞ 

∞ 

∞ 

∞ 

In this example, the Maximum Flow is 2, and the minimal vertex cover is Q = {L1, R3} and 
|Q| = 2. 



4 Recitation 7: Network Flow and Matching 

Correctness of Bipartite Vertex Cover as Maximum Flow
 

Claim 1: Every Vertex Cover Q of H defines an (S, T ) cut of a finite value c(S, T ).
 

Proof: Let Q = QL U QR where QL = Q ∩ L and QR = Q ∩ R. Then define the cut (S, T )
 
as follows: 

S = {s} ∪ QR ∪ (L\QL) 

T = {t} ∪ QL ∪ (R\QR) 

Proof by picture: 

s 

QL 

L\QL 

R\QR 

QR 

t 

Note that there cannot be any edges going from L\QL to R\QR because if there were such an edge, 
both endpoint vertices would not be covered and would contradict that Q was a valid vertex cover. 
From the picture it is clear that (S, T ) is indeed a cut in H . It is also clear that c(S, T ) = QL + QR 

because the only edges that cross the cut (S, T ) are all the edges from s to QL and from QR to t, 
and each of them have capacity 1. D 

Claim 1 implies that c(S∗, T ∗) ≤ |Q∗| where Q∗ is the minimum Vertex Cover of G and (S∗, T ∗) 
is the minimum cut in H . 

Claim 2: For any finite cut (S, T ) in H , the set Q = (S ∩ R) ∪ (T ∩ L) is a Vertex Cover of 
G. 

Proof: Observe the following picture: 
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s 

T ∩ L 

S ∩ L 

T ∩ R 

S ∩ R 

t 

Note that there cannot be any edges going from S ∩ L to T ∩ R because that would make c(S, T ) 
infinite and contradict the assumption that the cut must be of finite capacity. From this picture, 
it is clear that every edge in G has at least one end point in either T ∩ L or S ∩ R and indeed 
Q = (S ∩ R) ∪ (T ∩ L) covers G. It is also clear that |Q| = |S ∩ R| + |T ∩ L| = c(S, T ). D 

Claim 2 implies that |Q∗| ≤ c(S∗, T ∗) where (S∗, T ∗) is the minimum cut in H and Q∗ is the 
minimum Vertex Cover of G. 

Punchline: 

By claims 1 and 2, the size of the minimum Vertex Cover of G, |Q∗| is equal to the size of minimum 
cut (S∗, T ∗). And since the Maximum Flow is equal to the Minimum Cut, we can use Maximum 
Flow to solve Bipartite Vertex Cover in the way described above. 
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