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Randomized Select and Randomized Quicksort
 

1 Randomized Select
 
The algorithm RANDOMIZED-SELECT selects out the k-th order statistics of an arbitrary array. 

1.1 Algorithm 

The algorithm RANDOMIZED-SELECT works by partitioning the array A according to 
RANDOMIZED-PARTITION, and recurses on one of the resulting arrays. 

RANDOMIZED-SELECT(A, p, r, i) 

1 if p = r 
2 then return A[p] 
3 q ← RANDOMIZED-PARTITION(A, p, r) 
4 k ← q − p + 1 
5 if i ≤ k 
6 then return RANDOMIZED-SELECT(A, p, q, i) 
7 else return RANDOMIZED-SELECT(A, q + 1, r, i − k) 

RANDOMIZED-PARTITION(A, p, r) 

1 i ← RANDOM(p, r) 
2 exchange A[p] ↔ A[i] 
3 return PARTITION(A, p, r) 

Both of the algorithms above are as in CLRS. 

1.2 Analysis of Running Time 

Let T (n) be the expected running time Randomized Select. We would like to write out a recursion 
for it. 

Let Ei denote the event that the random partition divides the array into two arrays of size i and 
n − i. Then we see that 

n−1n 
T (n) ≤ n + Pr(Ei) (max (T (i), T (n − i))) , (1) 

i=0 
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where by taking the max we assume that we are recursing on the larger subarray (hence we have 
the less than or equal sign). 

For simplicity, let us assume that n is even. Note that max (T (i), T (n − i)) is always the same 
as max (T (n − i), T (i)). This allows us to extend the chain of inequalities to 

n/2−1n 
T (n) ≤ n + 2 Pr(Ei) (max (T (i), T (n − i))) . (2) 

i=0 

Also, since the partition element is chosen randomly, it is equally likely to partition the array 
into sizes 0, 1, · · · , n − 1. So Pr(Ei) = 

n 
1 for all i. This leads us to 

n/2−1n2 
T (n) ≤ n + (max (T (i), T (n − i))) . (3) 

n 
i=0 

We will not show, via substitution, that T (n) = O(n). 

Theorem 1 Let T (n) denote the expected running time of randomized select. Then T (n) = O(n). 

Proof. We will show by the method of substitution. Let’s say that T (n) ≤ cn, and check that it 
works. 

We must first check the base case. This is obvious, however, since T (n') is a constant for some 
'small constant n . 

Now let us check the inductive case. Assume that T (k) ≤ ck for all k < n, and we now want 
to show that T (n) ≤ cn. 

n/2−1 n/2−1n n2 2 
T (n) ≤ n + (max (T (i), T (n − i))) ≤ n + (max (ci, c(n − i))) . (4) 

n n 
i=0 i=0 

We note that that this is the same as 

n−1n2 
n + ci. (5) 

n 
i=n/2   n−1 n−1The term 2 (ci) is the same as 2c i. So we get 

n i=n/2 n i=n/2 ⎛ ⎞ 
n−1   n 

T (n) ≤ n + c ⎝ 2 
i⎠ ≤ n + c (3n/4) = n 1 + 

3c
. (6) 

n 4
i=n/2 

Hence if we take c = 4 (which works for the case T (1) ≤ 4 as well) we get   
3 ∗ 4 

T (n) ≤ n 1 + = n (1 + 3) = 4n, (7)
4

as we wanted. 
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2 Randomized Quicksort 

2.1 Algorithm 

The algorithm RANDOMIZED-QUICKSORT works by partitioning the array A, and recursively 
sorts both partitions. 

RANDOMIZED-QUICKSORT(A, p, r) 

1 if p < r 
2 then q ← RANDOMIZED-PARTITION(A, p, r) 
3 RANDOMIZED-QUICKSORT(A, p, q − 1) 
4 RANDOMIZED-QUICKSORT(A, q + 1, r) 

2.2 Analysis of Running Time 

Let T (n) be the expected running time Randomized Quicksort. Let Ei denote the event that the 
array is partitioned into two arrays of size i and n − i − 1. The pivot value is not included in either 
partition. Then we have 

n−1n 
(8)≤ − −T ( ) Pr(E )(T (i) + T ( i 1) + Θ( ))n n n ,i

i=0 

Because Pr(Ei) = 
n 
1 for all i, we have nn−1

T (n) ≤ (T (i) + T (n − i − 1) + Θ(n)), 
n 

i=0 

1
 
(9)
 

nn−1

T (n) ≤ T (i) + Θ(n), 
n 

i=0 

2
 
(10)
 

n 

The same as Randomized select, we use induction to prove that T (n) = Θ(n log n). Suppose 
T (n) ≤ cn log n for some constant c > 0. Notice the fact that 

n−1

2i log i ≤ 
1 
n 2 log n − 

1 
n , (11)

2 8 
i=0 

Then for the inductive step, we have nn−1

T (n) ≤ ci log i + Θ(n), 
n 

i=0 

2c 1 1 
( n 2 log n − n 2) + Θ(n), 

2
 
(12)
 

(13)
T (n) ≤
 
n
 2
 8
 

cn 
T (n) ≤ cn log n − ( − Θ(n)), (14)

4 
When c is chosen large enough, T (n) ≤ cn log n. 
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