Randomized Select and Randomized Quicksort

1 Randomized Select

The algorithm RANDOMIZED-SELECT selects out the k-th order statistics of an arbitrary array.

1.1 Algorithm

The algorithm Randomized-Select works by partitioning the array A according to RANDOMIZED-PARTITION, and recurses on one of the resulting arrays.

Randomized-SELECT (A, p, r, i)

```
if \(p=r\)
    then return \(A[p]\)
\(q \leftarrow\) Randomized-Partition \((A, p, r)\)
\(k \leftarrow q-p+1\)
if \(i \leq k\)
    then return Randomized- \(\operatorname{Select}(A, p, q, i)\)
    else return Randomized-Select \((A, q+1, r, i-k)\)
```

Randomized-Partition (A, p, r)
$i \leftarrow \operatorname{RANDOM}(p, r)$
exchange $A[p] \leftrightarrow A[i]$
return Partition (A, p, r)

Both of the algorithms above are as in CLRS.

1.2 Analysis of Running Time

Let $T(n)$ be the expected running time Randomized Select. We would like to write out a recursion for it.

Let E_{i} denote the event that the random partition divides the array into two arrays of size i and $n-i$. Then we see that

$$
\begin{equation*}
T(n) \leq n+\sum_{i=0}^{n-1} \operatorname{Pr}\left(E_{i}\right)(\max (T(i), T(n-i))), \tag{1}
\end{equation*}
$$

where by taking the max we assume that we are recursing on the larger subarray (hence we have the less than or equal sign).

For simplicity, let us assume that n is even. Note that $\max (T(i), T(n-i))$ is always the same as max $(T(n-i), T(i))$. This allows us to extend the chain of inequalities to

$$
\begin{equation*}
T(n) \leq n+2 \sum_{i=0}^{n / 2-1} \operatorname{Pr}\left(E_{i}\right)(\max (T(i), T(n-i))) \tag{2}
\end{equation*}
$$

Also, since the partition element is chosen randomly, it is equally likely to partition the array into sizes $0,1, \cdots, n-1$. So $\operatorname{Pr}\left(E_{i}\right)=\frac{1}{n}$ for all i. This leads us to

$$
\begin{equation*}
T(n) \leq n+\frac{2}{n} \sum_{i=0}^{n / 2-1}(\max (T(i), T(n-i))) \tag{3}
\end{equation*}
$$

We will not show, via substitution, that $T(n)=O(n)$.
Theorem 1 Let $T(n)$ denote the expected running time of randomized select. Then $T(n)=O(n)$.
Proof. We will show by the method of substitution. Let's say that $T(n) \leq c n$, and check that it works.

We must first check the base case. This is obvious, however, since $T\left(n^{\prime}\right)$ is a constant for some small constant n^{\prime}.

Now let us check the inductive case. Assume that $T(k) \leq c k$ for all $k<n$, and we now want to show that $T(n) \leq c n$.

$$
\begin{equation*}
T(n) \leq n+\frac{2}{n} \sum_{i=0}^{n / 2-1}(\max (T(i), T(n-i))) \leq n+\frac{2}{n} \sum_{i=0}^{n / 2-1}(\max (c i, c(n-i))) \tag{4}
\end{equation*}
$$

We note that that this is the same as

$$
\begin{equation*}
n+\frac{2}{n} \sum_{i=n / 2}^{n-1} c i \tag{5}
\end{equation*}
$$

The term $\frac{2}{n} \sum_{i=n / 2}^{n-1}(c i)$ is the same as $\frac{2 c}{n} \sum_{i=n / 2}^{n-1} i$. So we get

$$
\begin{equation*}
T(n) \leq n+c\left(\frac{2}{n} \sum_{i=n / 2}^{n-1} i\right) \leq n+c(3 n / 4)=n\left(1+\frac{3 c}{4}\right) \tag{6}
\end{equation*}
$$

Hence if we take $c=4$ (which works for the case $T(1) \leq 4$ as well) we get

$$
\begin{equation*}
T(n) \leq n\left(1+\frac{3 * 4}{4}\right)=n(1+3)=4 n \tag{7}
\end{equation*}
$$

as we wanted.

2 Randomized Quicksort

2.1 Algorithm

The algorithm RANDOMIZED-QUICKSORT works by partitioning the array A, and recursively sorts both partitions.

Randomized-Quicksort (A, p, r)

```
if }p<
    then }q\leftarrow\mathrm{ RANDOMIZED-Partition ( }A,p,r
        RANDOMIZED-QUICKSORT ( }A,p,q-1
        RANDOMIZED-QUICKSORT}(A,q+1,r
```


2.2 Analysis of Running Time

Let $T(n)$ be the expected running time Randomized Quicksort. Let E_{i} denote the event that the array is partitioned into two arrays of size i and $n-i-1$. The pivot value is not included in either partition. Then we have

$$
\begin{equation*}
T(n) \leq \sum_{i=0}^{n-1} \operatorname{Pr}\left(E_{i}\right)(T(i)+T(n-i-1)+\Theta(n)) \tag{8}
\end{equation*}
$$

Because $\operatorname{Pr}\left(E_{i}\right)=\frac{1}{n}$ for all i, we have

$$
\begin{gather*}
T(n) \leq \frac{1}{n} \sum_{i=0}^{n-1}(T(i)+T(n-i-1)+\Theta(n)) \tag{9}\\
T(n) \leq \frac{2}{n} \sum_{i=0}^{n-1} T(i)+\Theta(n) \tag{10}
\end{gather*}
$$

The same as Randomized select, we use induction to prove that $T(n)=\Theta(n \log n)$. Suppose $T(n) \leq c n \log n$ for some constant $c>0$. Notice the fact that

$$
\begin{equation*}
\sum_{i=0}^{n-1} i \log i \leq \frac{1}{2} n^{2} \log n-\frac{1}{8} n^{2} \tag{11}
\end{equation*}
$$

Then for the inductive step, we have

$$
\begin{gather*}
T(n) \leq \frac{2}{n} \sum_{i=0}^{n-1} c i \log i+\Theta(n), \tag{12}\\
T(n) \leq \frac{2 c}{n}\left(\frac{1}{2} n^{2} \log n-\frac{1}{8} n^{2}\right)+\Theta(n), \tag{13}\\
T(n) \leq c n \log n-\left(\frac{c n}{4}-\Theta(n)\right), \tag{14}
\end{gather*}
$$

When c is chosen large enough, $T(n) \leq c n \log n$.

MIT OpenCourseWare
http://ocw.mit.edu

6.046J / 18.410J Design and Analysis of Algorithms

Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

