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Problem Set 4 Solutions 

This problem set is due at 11:59pm on Thursday, March 5, 2015. 

Exercise 4-1. Read CLRS, Chapter 17. 

Exercise 4-2. Exercise 17.1-3. 

Exercise 4-3. Exercise 17.2-2. 

Exercise 4-4. Exercise 17.3-2. 

Exercise 4-5. Read CLRS, Chapter 7. 

Exercise 4-6. Exercise 7.1-3. 

Exercise 4-7. Exercise 7.2-5. 

Exercise 4-8. Exercise 7.4-4. 

Problem 4-1. Extreme FIFO Queues [25 points]
 

Design a data structure that maintains a FIFO queue of integers, supporting operations ENQUEUE,
 
DEUEUE, and FIND-MIN, each in O(1) amortized time. In other words, any sequence of m op
erations should take time O(m). You may assume that, in any execution, all the items that get
 
enqueued are distinct.
 

(a)	 [5 points] Describe your data structure. Include clear invariants describing its key
 
properties. Hint: Use an actual queue plus auxiliary data structure(s) for bookkeeping.
 

Solution: For example, we might use a FIFO queue Main and an auxiliary linked 
list, Min , satisfying the following invariants: 

1. Item x appears in Min if and only if x is the minimum element of some tail-
segment of Main . 

2. Min is sorted in increasing order, front to back. 

(b)	 [5 points] Describe carefully, in words or pseudo-code, your ENQUEUE, DEQUEUE
 

and FIND-MIN procedures.
 

Solution: 
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elements if you encounter one that is smaller than x.
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ENQUEUE(x) 

1	 Add x to the end of Main. 
2	 Starting at the end of the list, examine elements of Min and remove those that are larger than x; stop examining 
3	 Add x to the end of Min. 

DEQUEUE() 

1	 Remove and return the first element x of Main. 
2	 If x is the first element in Min, remove it. 

FIND-MIN()
 

1 Return the first element of Min .
 

(c)	 [5 points] Prove that your operations give the right answers. Hint: You may want to 
prove that their correctness follows from your data structure invariants. In that case 
you should also sketch arguments for why the invariants hold. 

Solution: This solution is for the choices of data structure and procedures given 
above; your own may be different. 
The only two operations that return answers are DEQUEUE and FIND-MIN. DEQUEUE 

returns the first element of Main , which is correct because Main maintains the actual 
queue. FIND-MIN returns the first element of Min . This is the smallest element of 
Min because Min is sorted in increasing order (by Invariant 2 above). The smallest 
element of Main is the minimum of the tail-segment consisting of all of Main , which 
is the smallest of all the tail-mins of Main . This is the smallest element in Min (by 
Invariant 1). Therefore, FIND-MIN returns the smallest element of Main, as needed. 
Proofs for the invariants: The invariants are vacuously true in the initial state. We 
argue that ENQUEUE and DEQUEUE preserve them; FIND-MIN does not affect them. 
It is easy to see that both operations preserve Invariant 2: Since a DEQUEUE opera
tion can only remove an element from Min , the order of the remaining elements is 
preserved. For ENQUEUE(x), we remove elements from the end of Min until we find 
one that less than x, and then add x to the end of Min . Because Min was in sorted 
order prior to the ENQUEUE(x), when we stop removing elements, we know that all 
the remaining elements in Min are less than x. Since we do not change the order of 
any elements previously in Min, all the elements are still in sorted order. 
So it remains to prove Invariant 1. There are two directions: 

•	 The new Min list contains all the tail-mins. 
ENQUEUE(x): x is the minimum element of the singleton tail-segment of Main and 
it is added to Min . Additionally, since every tail-segment now contains the value 
x, all elements with value greater than x can no longer be tail-mins. So, after their 
removal, Min still contains all the tail-mins. 
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DEQUEUE of element x: The only element that could be removed from Min is x. 
It is OK to remove x, because it can no longer be a tail-min since it is no longer in 
Main . All other tail-mins are remain in Min. 

•	 All elements of the new Min are tail-mins. 
ENQUEUE(x): x is the only value that is added to Min . It is the min of the singleton 
tail-segment. Every other element y remaining in the Min list was a tail-min before 
the ENQUEUE and is less than x. So y is still a tail-min after the ENQUEUE. 

DEQUEUE of element x: Then we claim that, if x is in Min before the operation, 
it is the first element of Min and therefore is removed from Min as well. Now, if 
x is in Min , it must be the minimum element of some tail of Main . This tail must 
include the entire queue, since x is the first element of Main . So x must be the 
smallest element in Min , which means it is the first element of Min . Every other 
element y in Min was a tail-min before the DEQUEUE, and is still a tail-min after 
the DEQUEUE. 

(d)	 [10 points] Analyze the time complexity: the worst-case cost for each operation, and 
the amortized cost of any sequence of m operations. 

Solution: DEQUEUE and FIND-MIN are O(1) operations, in the worst case. 
ENQUEUE is O(m) in the worst case. To see that the cost can be this large, suppose 
that ENQUEUE operations are performed for the elements 2, 3, 4, . . . ,m − 1,m, in or
der. After these, Min contains {2, 3, 4, . . . ,m − 1,m}. Then perform ENQUEUE(1). 
This takes Ω(m) time because all the other entries from Min are removed one by one. 
However, the amortized cost of any sequence of m operations is O(m). To see this, 
we use a potential argument. First, define the actual costs of the operations as follows: 
The cost of any FIND-MIN operation is 1. The cost of any DEQUEUE operation is 2, 
for removal from Main and possible removal from Min . The cost of an ENQUEUE 

operation is 2 + s, where s is the number of elements removed from Min . Define the 
potential function Φ = |Min|. 
Now consider a sequence o1, o2, . . . , om of operations and let ci denote the actual 
cost of operation oi. Let Φi denote the value of the potential function after exactly 
i operations; let Φ0 denote the initial value of Φ, which here is 0. Define the amortized 
cost ĉi of operation instance oi to be ci + Φi − Φi−1. 
We claim that ĉi ≤ 2 for every i. If we show this, then we know that the actual cost of 
the entire sequence of operations satisfies: 

mmmm m	 m

ci = ĉi + Φ0 − Φm ≤ ĉi ≤ 2m. 
i=1 i=1	 i=1 

This yields the needed O(m) amortized bound. 
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To show that ĉi ≤ 2 for every i, we consider the three types of operations. If oi is a 
FIND-MIN operation, then 

ĉi = 1 + Φi − Φi−1 = 1 < 2. 

If oi is a DEQUEUE, then since the lengths of the lists cannot increase, we have: 

ĉi = ci + Φi − Φi−1 ≤ 2 + 0 ≤ 2. 

If oi is an ENQUEUE, then 

ĉi = ci + Φi − Φi−1 ≤ 2 + s − s = 2, 

where s is the number of elements removed from Min . Thus, in every case, ĉi ≤ 2, as 
claimed. 
Alternatively, we could use the accounting method. Use the same actual costs as 
above. Assign each ENQUEUE an amortized cost of 3, each DEQUEUE an amortized 
cost of 2, and each FIND-MIN an amortized cost of 1. Then we must argue that 

m mm m 
ĉi ≥ ci 

i=1 i=1 

for any sequence of operations and costs as above. This is so because each ENQUEUE(x) 
contributes an amortized cost of 3, which covers its own actual cost of 2 plus the pos
sible cost of removing x from Min later. 

Problem 4-2. Quicksort Analysis [25 points] 

In this problem, we will analyze the time complexity of QUICKSORT in terms of error probabilities, 
rather than in terms of expectation. Suppose the array to be sorted is A[1 . . n], and write xi for the 
element that starts in array location A[i] (before QUICKSORT is called). Assume that all the xi 

values are distinct. 

In solving this problem, it will be useful to recall a claim from lecture. Here it is, slightly restated: 

Claim: Let c > 1 be a real constant, and let α be a positive integer. Then, with probability at least 
1 − 

n
1 
α , 3(α + c) lg n tosses of a fair coin produce at least c lg n heads. 

Note: High probability bounds, and this Claim, will be covered in Tuesday’s lecture. 

(a)	 [5 points] Consider a particular element xi. Consider a recursive call of QUICKSORT
 

on subarray A[p . . p+m−1] of size m ≥ 2 which includes element xi. Prove that, with
 
probability at least 1

2 , either this call to QUICKSORT chooses xi as the pivot element,
 
or the next recursive call to QUICKSORT containing xi involves a subarray of size at
 
most 3

4 m.
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Solution: Suppose the pivot value is x. If lm J + 1 ≤ x ≤ m − lm J, then both 
4	 4 

subarrays produced by the partition have size at most 3
4 
m . Moreover, the number of 

values of x in this range is at least m , so the probability of choosing such a value is at 
2 

least 1
2 . Then either xi is the pivot value or it is in one of the two segments. 

(b)	 [9 points] Consider a particular element xi. Prove that, with probability at least 1− 
n
1 
2 , 

the total number of times the algorithm compares xi with pivots is at most d lg n, for 
a particular constant d. Give a value for d explicitly. 

Solution: We use part (a) and the Claim. By part (a), each time QUICKSORT is called 
for a subarray containing xi, with probability at least 1

2 , either xi is chosen as the pivot 
value or else the size of the subarray containing xi reduces to at most 3

4 of what it 
was before the call. Let’s say that a call is “successful” if either of these two cases 
happens. That is, with probability at least 1

2 , the call is successful. 
Now, at most log4/3 n successful calls can occur for subarrays containing xi during an
 
execution, because after that many successful calls, the size of the subarray containing
 
xi would be reduced to 1. Using the change of base formula for logarithms,
 
log4/3 n = c lg n, where c = log4/3 2.
 
Now we can model the sequence of calls to QUICKSORT for subarrays containing xi 

as a sequence of tosses of a fair coin, where heads corresponds to successful calls. 
By the Claim, with c = log4/3 2 and α = 2, we conclude that, with probability at 
least 1 − 

n
1 , we have at least c lg n successful calls within d lg n total calls, where 2 

d = 3(2 + c). Each comparison of xi with a pivot occurs as part of one of these calls, 
so with probability at least 1 − 

n
1 , the total number of times the algorithm compares 2 

xi with pivots is at most d lg n = 3(2 + c) lg n = 3(2 + log4/3 2) lg n. The required 
value of d is 3(2 + log4/3 2) ≤ 14. 

(c)	 [6 points] Now consider all of the elements x1, x2, . . . , xn. Apply your result from 
part (b) to prove that, with probability at least 1 − 

n 
1 , the total number of comparisons 

made by QUICKSORT on the given array input is at most d'n lg n, for a particular 
constant d'. Give a value for d' explicitly. Hint: The Union Bound may be useful for 
your analysis. 

Solution: Using a union bound for all the n elements of the original array A, we get 
that, with probability at least 1 − n(

n
1 ) = 1 − 

n 
1 , every value in the array is compared 2 

with pivots at most d lg n times, with d as in part (b). Therefore, with probability at 
least 1 − 

n 
1 , the total number of such comparisons is at most dn lg n. Using d' = d 

works fine. 
Since all the comparisons made during execution of QUICKSORT involve comparison 
of some element with a pivot, we get the same probabilistic bound for the total number 
of comparisons. 
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(d)	 [5 points] Generalize your results above to obtain a bound on the number of compar
isons made by QUICKSORT that holds with probability 1− 

n
1 , for any positive integer
 α 

α, rather than just probability 1 − 
n 
1 (i.e., α = 1). 

Solution: The modifications are easy. The Claim and part (a) are unchanged. For 
part (b), we now prove that with probability at least 1 − 

n
1 , the total number of α+1 

times the algorithm compares xi with pivots is at most d lg n, for d = 3(α + c). The 
argument is the same as before, but we use the Claim with the value of α instead of 2. 
Then for part (c), we show that with probability at least 1 − 

n
1 , the total number α 

of times the algorithm compares any value with a pivot is at most dn lg n, where 
d = 3(α + c). 
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