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Problem Set 10 Solutions 

This problem set is due at 11:59pm on Friday, May 8, 2015. 

Exercise 10-1. Read the lecture slides for Lectures L19 and L20.
 

Problem 10-1. Leader Election in a Synchronous Ring [25 points] 

Consider a collection of n identical processes arranged in a synchronous ring network. Each pro
cess has two sets of ports, one to each of its immediate neighbors, with its ports to its clockwise 
neighbor named left and its ports to its counterclockwise neighbor named right . Thus, the pro
cesses have a common sense of orientation. 

The goal is for the processes to elect a single leader: exactly one process should eventually output 
LEADER. 

(a)	 [5 points] First suppose that the processes are deterministic, and that they know n (the
 
size of the ring). Either give a correct leader election algorithm for this case, or prove
 
that no such algorithm exists. If you give an algorithm, analyze its time and message
 
complexity.
 

Solution: Impossible. Suppose for contradiction that such an algorithm exists. 
We can use a standard inductive symmetry argument. Namely, prove by induction on 
the number r of rounds that, after r rounds, all the processes are in identical states. 
Since the algorithm must solve the leader election problem, eventually, one process 
outputs LEADER. But then all processes do the same thing, in the same round. 

(b)	 [10 points] Now suppose that the processes are probabilistic (i.e., randomized), and
 
that they know n. We would like an algorithm that (a) never elects more than one
 
leader, and (b) with probability 1, eventually elects a leader. Either give an algorithm
 
satisfying these properties, or prove that none exists.
 
If you give an algorithm, analyze its time and message complexity. Your analysis 
should relate the complexity to the success probability. Specifically, for any ε, 0 < 
ε < 1, you should provide bounds on the time and message complexity that hold with 
probability at least 1 − ε. 

Solution: Here a simple algorithm exists. 
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Lemma, similar to one from class: If n processes choose ids uniformly at random, in
dependently, from {1, . . . , n2}, then with probability at least 1/2, the chosen numbers 
are all distinct. 
Algorithm: The algorithm works in a series of phases. In each phase, all processes 
choose random ids from a sufficiently large space, defined as in the lemma as {1, ..., n2}. 
Then they all send their ids around the ring, (say) in the clockwise direction. After 
exactly n steps, every process examines the sequence of ids that it has received. There 
are three cases: 

1. If the maximum id in the sequence is not unique, it abandons this phase and goes 
on to the next. 

2. If the maximum id in the sequence is unique and is the process’ own id, then it 
outputs LEADER and halts. 

3. If the maximum id in the sequence is unique and is not the process’ own id, then 
it just halts. 

It should be clear that, at the first phase where all the processes choose distinct ids, 
exactly one process elects itself the leader, and then the algorithm halts. So certainly 
the algorithm never elects more than one leader. 
At each phase, with probability at least 1/2, all the chosen ids are distinct and the algo
rithm terminates. Since the choices in different phases are independent, the probability 
that the algorithm finishes within h phases is at least 1 − 

2
1 
h . Thus, with probability 1, 

it eventually finishes. 
We analyze the time and message complexity. Each phase consists of n rounds, and 
sends n2 (single-hop) messages. Consider any ε, 0 < ε < 1. Choose h to be the 
smallest integer such that 

2
1 
h ≤ ε, that is, h = ilg (1/ε)l. Then with probability at 

least 1 − δh ≥ 1 − ε, the algorithm finishes within h phases, using n · h rounds and 
n2 · h messages. That is, with probability at least 1 − ε, the time complexity is at most 
nilg (1/ε)l and the message complexity is at most n2ilg (1/ε)l. 

(c) [10 points] Finally suppose that the processes are probabilistic and they do not know 
n. That is, the same algorithm must work regardless of the size of the ring in which 
the processes are placed. We would again like an algorithm that (a) never elects more 
than one leader, and (b) with probability 1, eventually elects a leader. Either give 
an algorithm satisfying these properties, or prove that none exists. If you give an 
algorithm, analyze its time and message complexity as described in Part (b). 

Solution: This is impossible. Suppose for contradiction that such an algorithm exists. 
Consider the algorithm operating in a ring S of size n, for any particular value of n. 
Number the processes of S as 1, . . . , n based on their positions in the ring, counting 
clockwise. Since the algorithm eventually elects a leader in ring S with probability 
1, there must be at least one execution α of S that leads to some process j outputting 
LEADER. That is, there is some particular mapping from processes to sequences of 
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random choices such that, in the execution α in which these choices are made, some 
process j is elected leader. 
Now consider a ring R of size 2n consisting of two half-rings R1 and R2, each of size 
n. Number the processes of R as 1, . . . , 2n. Then there is an execution α' of R in 
which processes i and n + i in R happen to make the same random choices as process 
i in S. In execution α', processes i and n + i behave exactly like process i in execution 
α of S. Since process j outputs LEADER in execution α, both processes j and n + j 
output LEADER in execution α'. This contradicts problem requirement (a). 
Notice that this proof shows that we can’t achieve any positive election probability ε, 
not just probability 1. 

Problem 10-2. Breadth-First Search in an Asynchronous Network [25 points] 

The asynchronous Breadth-First Search algorithm presented in class involves corrections that could 
trigger the sending of many messages, resulting in worst-case message complexity O(nE) and 
worst-case time complexity O(diam · n · d), until all nodes’ parent variables have stabilized to 
correct parents in a breadth-first spanning tree. (We are not considering individual processes’ 
parent outputs here, nor global termination. We are also ignoring local processing time.) 

This problem involves designing a better asynchronous Breadth-First Search algorithm, one that 
does not make any corrections. Thus, once a process sets its parent variable, it can output the 
value since that is its final decision. 

Assume that the network graph is connected and contains at least two nodes. 

(a)	 [18 points] Describe carefully, in words, an algorithm in which the root node v0
 

coordinates the construction of the tree, level by level. Your algorithm should take
 
time O(diam2 · d) until all the parent variables are set.
 
(Hint: The root node can conduct broadcast-convergecast waves to build the succes
sive levels in the tree. Four types of messages should be enough, e.g., search messages 
that test for new nodes, parent(b) (b a Boolean) for parent/nonparent responses, and 
ready and done messages for broadcasting and convergecasting signals on the tree.) 

Solution: Node v0 initiates successive phases of the algorithm. At each phase d, 
exactly the nodes at distance d from v0 get incorporated into the BFS tree. 
At phase 1: 
Node v0 sends search messages to all its neighbors. The neighbors record v0 as their
 
parent, record that they are new nodes, and send parent responses back to v0. When
 
v0 receives parent responses from all its neighbors, it is ready to start phase 2.
 
At phase d, d ≥ 2:
 
Node v0 broadcasts ready messages down all the branches of the tree built so far, until
 
they reach the new nodes. Each new node sends search messages to all its neighbors.
 
When a node receives a search message, if it does not already have a parent, it sets its
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parent variable to the sender’s id, records that it is new , and sends a parent response.
 
If it already has a parent, it sends a nonparent response.
 
When a new node has received responses to all its search messages, it sends a done(b)
 
message to its parent, where b = TRUE if the node has received at least one parent
 
response, = FALSE otherwise. The done messages get convergecast up the tree; each
 
node sets the bit b in the message it sends to its parent to the “or” of the bits it received
 
from its children.
 
When node v0 has received done messages from all its children, it begins phase d + 1
 
if any of the messages contain value 1; otherwise it halts.
 

(b)	 [7 points] Analyze the time and communication complexity of your algorithm, and 
compare them to the costs of the asynchronous BFS algorithm presented in class. 

Solution: The time complexity is O(diam2 · d). Each phase takes time O(diam · d), 
and there are O(diam) phases.
 
The message complexity is O(E + diam · n). Each edge is traversed once in each
 
direction with search and parent messages. The ready and done messages traverse
 
tree edges only, so there are O(n) of these per phase.
 

Solution: 
If it is instructive here is some code for part (a) that we think might help understand 
this problem more deeply. 

Process v0 

State variables: 
for each v ∈ Γ(v0), send(v), a queue, initially (search)
 
responded ⊆ Γ(v0), initially ∅
 
newinfo, a Boolean, initially false
 

Transitions: 

input receive(search)v,v0 , v ∈ Γ(v0)
 
Effect: add parent(false) to send(v)
 

input receive(parent(true))v,v0 , v ∈ Γ(v0)
 
Effect:
 
responded := responded ∪ {v}
if responded = Γ(v0) then
 

for each w ∈ Γ(v0), add ready to send(w)
 
responded := ∅
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newinfo := false 

input receive(done(b))v,v0 , b a Boolean, v ∈ Γ(v0)
 
Effect:
 
responded := responded ∪ {v}

newinfo := newinfo ∨ b
 
if responded = Γ(v0) and newinfo then
 

for each w ∈ Γ(v0), add ready to send(w) 
responded := ∅ 
newinfo := false 

output send(m)v,v0 , m a message, v ∈ Γ(v0)
 
Precondition: m = head(send(v))
 
Effect: remove head of send(v)
 

Process u, u  = v0 

State variables: 
parent ∈ Γ(u) ∪ {⊥}, initially ⊥ 
children ⊆ Γ(u), initially ∅ 
newnode a Boolean, initially false 
for each v ∈ Γ(u), send(v), a queue, initially empty 
responded ⊆ Γ(u), initially ∅ 
newinfo, a Boolean, initially false 

Transitions: 

input receive(search)v,u, v ∈ Γ(u)
 
Effect:
 
if parent = ⊥ then
 

parent := v
 
newnode := true
 
add parent(true) to send(v)
 

else add parent(false) to send(v) 

input receive(parent(b))v,u, b a Boolean, v ∈ Γ(u)
 
Effect:
 
if b then
 

children := children ∪ {v}
newinfo := true 

responded := responded ∪ {v}
if responded = Γ(u) then add done(newinfo) to send(parent) 
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input receive(ready)v,u, v ∈ Γ(u)
 
Effect:
 
if newnode then for each w ∈ Γ(u), add search to send(w)
 
else for each w ∈ children, add ready to send(w)
 
responded := ∅
 
newinfo := false
 

input receive(done(b))v,u, b a Boolean, v ∈ Γ(u)
 
Effect:
 
responded := responded ∪ {v}

newinfo := newinfo ∨ b
 
if responded = children then add done(newinfo) to send(parent)
 

output send(m)u,v, m a message, v ∈ Γ(u)
 
Precondition: m = head(send(v))
 
Effect: remove head of send(v)
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