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1 Review 

In this recitation, we’ll be talking about how to prove that a 
problem is NP-hard. In order to do so, it’s a good idea to first 
review some definitions. The definitions of NP and NP-hardness can 
be very tricky to get at first, so it’s a good thing to make sure that 
we’re all on the same page. 

The first thing to take care of is actually even more basic: how do 
we define a problem? Is it very general or very specific? For instance, 
3-Sat is a problem. But there’s a number of related problems, such 
as the problem of whether the boolean formula (x1 ∨ x2) ∧ (x2 ∨ x1) 
can be satisfied. For the purposes of this recitation, we’ll be calling 
3-Sat a problem, and boolean formulae like the one above are called 
problem instances. 

1.1 About NP 

With that out of the way, we can review the definition of NP. 
All problems in NP are decision problems, not search problems: the 
answer to a particular instance of the problem is always either True 
or False. However, for any decision problem there’s usually a related 
search problem. And if you’re trying to show that a search problem 
is NP-hard, it’s sufficient to show that the related decision problem 
is NP-hard. 

Informally, a problem is in NP if and only if it has a polynomial-
time verifier. In other words, it is in NP if you can check whether 
the answer is correct in polynomial time. However, there’s a bit of a 
complication here. The answer to a decision problem is either True 
or False. So “checking” an answer seems like it would consist of 
taking as input the problem instance x and the answer True, and 
verifying that that was the correct answer. But it seems like if you 
could do that in polynomial-time, you ought to be able to solve x in 
polynomial-time. (Just try running the verifier with x and True as 
inputs.) 
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About NP. 
•	 Decision problems: solution to every prob

lem instance is True or False. 
•	 Formally, there exists a poly-time algorithm 

A such that the answer to instance x is 
True iff there exists a poly-size witness y 
with A(x, y) = True. 
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That’s where the idea of witnesses comes in. A witness y for a 
problem instance x is basically secret information that lets you verify 
that the answer to x is True. It’s usually the answer to the related 
search problem. For example, consider the question of whether the 
boolean formula (x1 ∨ x2) ∧ (x2 ∨ x1) can be satisfied. This is clearly 
an instance of the 3-Sat problem. The related search problem asks 
for a particular assignment that satisfies that formula. So the witness 
for the satisfiability of that problem would be an assignment such as 
x1 = True, x2 = True. 

There are a couple of things to note. First of all, the size of the 
witness y should be polynomial in the size of the problem instance x. 
Second, if a problem is in NP, then there are witnesses that attest to a 
particular problem instance being True, but there might not be any 
witnesses that attest to a particular problem instance being False. 
The decision problem is usually defined as, “Is there an answer to 
this related search problem?” So finding an answer to the related 
search problem is clearly a witness to the decision problem. But if 
there is no answer, there might not be an efficient way to check. 

1.2 About NP-Hardness 

Now that we’ve reviewed the definition of NP, we can move on to 
the definition of NP-hardness. A problem is NP-hard if all problems 
in NP can be reduced to it in polynomial time. So if any NP-hard 
problem can be solved in polynomial time, then any problem in NP 
can also be solved in polynomial time. Unfortunately, this means 
that it seems rather difficult to show that anything is NP-hard. (Hav
ing to show a reduction from every problem in NP from scratch every 
time seems like it would be very difficult.) Luckily, there’s a short
cut: if you know that a problem A is NP-hard, then you can show 
that a problem B is NP-hard by giving a polynomial-time reduction 
from any instance of problem A to an instance of problem B. 

2 Proving NP-Hardness 

This brings us to the main topic of this particular recitation: how 
to show that a problem is NP-hard. We’ll be approaching this from 
an algorithmic design perspective: not just giving an example of a 
proof of NP-hardness, but also showing how to come up with such a 
proof. 

The technique that we’ll be using boils down to the four steps 
listed to the right. We’ll be using those four steps in an attempt to 
prove that the Subset-Sum problem is NP-hard. 

2.1 Pick a Problem 

The very first step in showing NP-hardness is to pick a problem 
to reduce from. Technically, there exists a polynomial-time reduction 

NP-Hardness and NP-Completeness. 
•	 A problem is NP-hard if all problems in NP 

can be reduced to it. 
•	 To show NP-hardness, sufficient to reduce a 

known NP-hard problem to it. 
•	 A problem is NP-complete if it is NP-hard 

and in NP. 

Recipe for NP-Hardness. 
1. Pick a problem to reduce from. 
2. Relate the witnesses. 
3. Add constraints. 
4. Formalize. 
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from every NP-complete problem to every NP-hard problem, so we 
could pick pretty much any problem. But some problems are a lot 
easier than others. It’s usually a good idea to pick a problem that is 
in some way related. 

To the right there is a list of the problems that are most commonly 
used to show NP-hardness. Some of these you may already know. 
However, for the sake of completeness, we’re going to repeat the 
definition of each. 

Definition 1. The 3-Sat problem is defined as follows: 

•	 Input: A boolean formula in conjunctive normal form such 
that there are at most three literals in each clause. 

•	 Output: True if and only if the formula is satisfiable. 

Definition 2. The Subset-Sum problem is defined as follows: 

•	 Input: A set S = {s1, . . . , sn} of non-negative integers and a 
target value t. 

•	 Output: True if and only if there exists a subset of S that 
sums to t. 

Definition 3. The Vertex-Cover problem is defined as follows: 

•	 Input: A graph G = (V, E) and a non-negative integer k. 

•	 Output: True if and only if there exists a subset S of vertices 
such that |S| = k and all edges are incident to at least one 
vertex in S. 

Definition 4. The Clique problem is defined as follows: 

•	 Input: A graph G = (V, E) and a non-negative integer k. 

•	 Output: True if and only if there exists a subset S of ver
tices such that |S| = k and the subgraph of G induced by S is 
complete. 

Definition 5. The Graph-Coloring problem is defined as follows: 

•	 Input: A graph G = (V, E) and a number of colors k ≥ 3. 

•	 Output: True if and only if there exists a way to assign each 
vertex a color such that no edge connects two vertices of the 
same color. 

These problems fall into three categories: booleans, numbers, and 
graphs. These categories can be useful in picking which problem to 
reduce from. If we’re trying to show that some problem related to 
booleans is NP-hard, then it might make sense to reduce from 3-Sat. 
If we’re trying to show that some problem related to numbers is NP-
hard, then it might make sense to reduce from Subset-Sum. If we’re 
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Known NP-Complete Problems. 
•	 3-Sat 
•	 Subset-Sum 
•	 Vertex-Cover 
•	 Clique 
•	 Graph-Coloring 
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trying to show that some problem related to graphs is NP-hard, then 
it might make sense to reduce from whichever of Vertex-Cover, 
Clique, or Graph-Coloring seems more closely related. 

In this recitation, we’re trying to show that Subset-Sum is NP-
hard. That’s a number-related problem, but unfortunately we can’t 
show that Subset-Sum is NP-hard by reducing from Subset-Sum. 
Instead, we’re going to do it by reduction from 3-Sat. Note that 
3-Sat can often be a sort of catch-all — even when the problem 
doesn’t seem to be related to booleans, the reduction from 3-Sat 
can be quite straightforward in some cases. 

2.2 Relate the Witnesses 

Now that we’ve picked a problem, it’s time to start constructing 
our reduction. Due to some complications with the definition of NP, 
we cannot use general Cook reductions to show that a problem is 
NP-hard. Instead, we must use Karp reductions. 

Recall that a Karp reduction from a problem A to a problem B is 
a function f mapping instances of problem A to instances of problem 
B such that for any instance x of A, the answer to x is True if and 
only if the answer to f(x) is True. If A and B are problems in NP, 
then we can use the definition of NP to rewrite the definition of a 
Karp reduction as follows. 

Let VA be the poly-time verifier for A, and let VB be the poly-
time verifier for B. Then f is a Karp reduction from A to B if and 
only if for all instances x of A, there is a poly-size witness y for the 
truth of x if and only if there is a poly-size witness z for the truth of 
f(x). More formally: 

There exists a poly-size 
witness y such that 
VA(x, y) = True. 

⇐⇒ 
There exists a poly-size 

witness z such that 
VB (f(x), z) = True. 

What does this mean? Well, it means that if a witness exists for 
x, then there must be a witness for f(x), and vice versa. Logically, it 
seems like maybe these witnesses should be connected somehow. So 
that is our first step in building a reduction: find a mapping between 
the witnesses that seems like it might be useful. 

Let’s discuss what properties might be useful. The problem in
stance x can be any instance of problem A, so we can’t place any 
constraints on the witness y. The problem instance f(x), on the 
other hand, is strictly determined by our reduction, and so we may 
be able to place constraints on the witness z. 

This mapping between witnesses should be two-way. We want to 
be able to construct the appropriate z given any y, and we want to 
be able to extract the value of y given the appropriate z. This is an 
encoding of sorts: we want all of the information in y to show up 
somewhere in z preferably in a way that’s pretty easy to extract. 
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Reduction Form. 
•	 For NP-hardness, must use Karp. 
•	 A Karp reduction from Problem A to Prob

lem B is a function f mapping instances of 
A to instances of B such that: 

answer to x ⇔ answer to f(x) 
is True is True 

•	 If A and B are problems in NP with VA 

the verifier for A and VB the verifier for B, 
equivalent to: 

exists witness y : exists witness z : 
VA(x, y) = True 

⇔ 
VB (f(x), z) = True 
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It can be hard to understand what this process of relating wit
nesses looks like without an example. So let’s return to our reduction 
from 3-Sat to Subset-Sum. A witness for 3-Sat assigns each vari
able a value of True or False. A witness for Subset-Sum is a 
subset of numbers. So if we want to encode a variable assignment in 
a subset, it makes sense to create for each variable in our 3-Sat prob
lem, a number in our Subset-Sum problem that will be included in 
the subset if and only if the variable is True. 

Does this idea work? Well, let’s do an example. Suppose that we 
start with the 3-Sat instance (x1 ∨ x2) ∧ (x2 ∨ x1). There are two 
variables x1 and x2, so we would create two numbers in our Subset-
Sum instance: s1 and s2. The assignment x1 = True, x2 = True 
is a witness for 3-Sat, so the corresponding Subset-Sum witness 
would be the set {s1, s2}. To make this work properly, we’d probably 
want to set t = s1 + s2. 

But this doesn’t quite work properly. There’s another witness for 
the boolean formula above: x1 = False and x2 = False. This would 
correspond to the empty subset. So to make this work properly, we’d 
probably want to set t = 0. Combined with the constraints on non-
negativity, this means that s1 = s2 = 0. This seems wrong. 

How can we fix this? Well, the problem seems to be that when we 
set a variable to false, nothing shows up in the corresponding subset. 
So intuitively, it seems like the target value we’re looking for should 
be roughly proportional to the number of variables that need to be 
true to create a satisfying assignment. (If we assume that all of the 
numbers are roughly the same size.) But we don’t know how many 
variables need to be true to create a satisfying assignment. 

So let’s take a different approach. Let’s make each variable xi 

have two numbers siT and siF in the corresponding Subset-Sum 
instance. The number siT should be included in the subset if and 
only if xi is set to True. The number siF should be included in 
the subset if and only if xi is set to False. We’ll have to figure 
out how to enforce those constraints later, but in the meantime this 
seems to fix our problem. Now the witness x1 = True, x2 = False 
corresponds to the subset {s1T , s2T }, while the witness x1 = False, 
x2 = False corresponds to the subset {s1F , s2F }. And it’s not out 
of the realm of possibility to have s1T + s2T = t = s1F + s2F . 

2.3 Add Constraints 

We have made a decision about how we want the witnesses y 
and z to relate to each other. Now it’s time to make sure that y is 
a witness for x only when z is a witness for f(x), and vice versa. 
This step usually requires rephrasing the constraints of Problem A 
(the problem we’re reducing from) in terms of the constraints of 
Problem B (the problem we’re reducing to). Essentially, there are 
certain constraints that determine whether or not a given string y is 
a witness for the problem instance x. We have to somehow simulate 

Witnesses Example. 
•	 3-Sat Witness: Satisfying assignment of 

True or False to all variables. 
•	 Subset-Sum Witness: Subset of numbers 

that sums to the target. 

First Idea. 
•	 For each variable in the 3-Sat instance, 

make a corresponding number in the 
Subset-Sum instance. 

•	 Variable is True iff corresponding number 
is included in Subset-Sum witness. 

Second Idea. 
•	 For each variable xi in the 3-Sat instance, 

make two corresponding numbers siT and 
siF in the Subset-Sum instance. 

•	 xi = True ⇔ siT included in subset 
•	 xi = False ⇔ siF included in subset 

Add Constraints. 
•	 Figure out constraints imposed on witness 

y by Problem A. 
•	 Figure out constraints imposed on witness 

z by Problem B. 
•	 Want to simulate constraints of Problem A 

using constraints from Problem B. 
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those constraints using the constraints that determine whether or 
not a given string z is a witness for the problem instance f(x). 

Unfortunately, this step is by far the most difficult to understand 
in its full generality. So let’s see how it applies to the problem that 
we’ve been working on. 

Let’s try to understand the types of constraints in 3-Sat and in 
Subset-Sum. Any witness for 3-Sat has the following properties: 

1. Variables are assigned to be either True or False. No variable 
can be given more than one value. All variables must be given 
a value. 

2. In each clause of the boolean formula, at least one of the literals 
must be true. 

The constraints for Subset-Sum are: 

1. The numbers in the witness must all come from S, the set of 
numbers in the Subset-Sum instance. No number can be used 
more than once. 

2. All of the numbers in the witness must sum to t. 

At first, this seems like a rather tough task. The constraints on 3
Sat are myriad: one independent constraint for each clause. The 
constraints on Subset-Sum are comparatively simple: the witness 
must be a subset, and it must sum to the correct value. 

Let’s start by figuring out how to simulate the first 3-Sat con
straint: that all variables must be assigned to either True or False, 
but not both. We have decided that for a variable xi, the number 
siT should be included in the Subset-Sum witness if and only if 
xi = True in the corresponding 3-Sat witness. Similarly, the num
ber siF should be included in the Subset-Sum witness if and only if 
xi = False in the corresponding 3-Sat witness. So the equivalent 
of making sure that xi is assigned to either True or False but not 
both would be to make sure that either siT or siF shows up in the 
witness z, but not both. 

To tackle this problem, let’s look at a smaller case. Suppose 
we only have one variable x1. Then there are two numbers in the 
Subset-Sum problem: s1T and s1F . We want to make sure that 
exactly one of them is selected for the subset. If we don’t have to 
satisfy any other constraints, then it’s sufficient to set s1T = s1F = t. 
That way, we pick exactly one for the subset. 

We may generalize this as depicted at right: each variable xi has a 
unique power of 2 associated with it. If s1T and s1F are both included 
in some subset, then the sum of the subset must be even. But t is 
odd, so exactly one of s1T and s1F must be included in the subset. 
By induction, we can show that for each variable xi, exactly one of 
siT and siF must be included to make the sum work out properly. 

Understanding Constraints. 
•	 Constraints on 3-Sat witnesses: 

1. all variables True or False 
2.	 cannot be both 
3. all clauses contain a true literal 

•	 Constraints on Subset-Sum witnesses: 

1.	 must be a subset 
2.	 must sum to t 

Variables Not Both True and False. 
•	 Simple Example: Only one variable, x1. 

–	 Want the subset summing to t to con
tain exactly one of s1T and s1F . 

–	 Idea: Make s1T , s1F = t. 

•	 General Case: Extend to more variables. 

–	 Idea: For each variable xi, set siT = 
siF = 2i−1 . Then set t = 2n − 1. 

–	 Written out in binary: 

s1T = 0 0 0 1 
s1F = 0 0 0 1 
s2T = 0 0 1 0 
s2F = 0 0 1 0 
s3T = 0 1 0 0 
s3F = 0 1 0 0 
s4T = 1 0 0 0 
s4F = 1 0 0 0 

t = 1 1 1 1 

–	 Realization: Can use different bits 
in numbers to impose different con
straints. 

6
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This construction won’t completely work, in practice. (All num
bers in the Subset-Sum problem must be unique.) But it gives us 
some intuition on how to construct constraints: if we can avoid or 
limit carries, then different bits of the number can be used to impose 
different constraints. We can use this idea in an attempt to impose 
all of the 3-Sat constraints. 

The other kind of 3-Sat constraints we need to simulate are the 
clause constraints. For each clause, there are three assignments of 
the form xi = True or xi = False that could cause the clause 
to be satisfied. At least one of those assignments must be included 
in the set of assignments used to satisfy the whole formula. We 
can rephrase this in terms of the Subset-Sum instance: for each 
clause, there are three numbers that, when included in the subset, 
correspond to satisfying the clause. We want to add constraints to 
our Subset-Sum instance to ensure that at least one of these three 
numbers is included in the subset. 

At right, we depict one way to do this. Each clause gets several 
bits associated with it, and the numbers associated with satisfying 
that clause have a value of 1 in the bits associated with that clause. 
But what should the target value be? Well, the number of assign
ments that satisfy the clause should be at least one, but it could be 
as high as three. So we need some way to make sure that no mat
ter how many true literals the clause contains for a given satisfying 
assignment, the sum works out properly. To do so, we add extra 
values to fill the gap for each clause. If the extra values sum to at 
most 3 within the bits devoted to that clause, then by setting the 
target value to 4 within those bits, we can ensure that each clause 
must contain at least one true literal. 

2.4 Formalize 

Now that we’ve figured out most of the details, it’s time to for
malize the reduction. Suppose that we’re given an instance of 3-Sat 
with n variables x1, . . . , xn and m clauses c1, . . . , cm. Then we con
struct the numbers in our Subset-Sum instance as follows: 

•	 For each variable xi, let CiT = {j | xi ∈ cj } be the indices of 
the clauses that contain the literal xi. Then define the number 
siT as follows:  

1 · 23(j−1)siT = 1 · 23(i+m−1) +
j∈CiT 

•	 For each variable xi, let CiF = {j | xi ∈ cj } be the indices of 
the clauses that contain the literal xi. Then define the number 
siF as follows:  

1 · 23(j−1)siF = 1 · 23(i+m−1) +
j∈CiF 

7
 

Clause Constraints. 
•	 Assign each clause several bits. 
•	 For each variable assignment xi = True or 

xi = False, modify the variable siT or siF 

to have a 1 in all of the clauses that the 
assignment would satisfy. 

•	 Example: (x1 ∨ x2) ∧ (x2 ∨ x1) ∧ (x1 ∨ x2) 

–	 Clause c1 = (x1 ∨ x2). 
–	 Clause c2 = (x2 ∨ x1). 
–	 Clause c3 = (x1 ∨ x2). 

x2 x1 c3 c2 c1 

s1T = 
s1F = 
s2T = 
s2F = 

000 
000 
001 
001 

001 
001 
000 
000 

001 
000 
001 
000 

000 
001 
001 
000 

001 
000 
000 
001 

t = 001 001 ??? ??? ??? 



  

3 
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• For each clause cj , define two numbers: 

rj1 = 1 · 23(j−1) 

rj2 = 2 · 23(j−1) 

We then define the target sum t to be: 

n m 

1 · 23(i+m−1) + 4 · 23(j−1)t = 
i=1 j=1 

All that remains now is to prove that this construction is correct. 
We may do so by arguing about the witnesses: that a witness for the 
original 3-Sat instance can be transformed into a witness for the 
corresponding Subset-Sum instance, and vice versa. 

Strong and Weak NP-Hardness 

One thing to note about the above reduction is the magnitude of 
the numbers that we use. Note that the magnitude of the numbers is 
exponential in m and n. If those numbers are written in binary, this 
is not a problem: it takes O(m + n) time to write down a number 
with O(m + n) bits. So this reduction requires polynomial time if 
the numbers are written in binary. 

Suppose that we wanted to write those numbers in unary. Writing 
a number in unary means writing down a sequence of symbols whose 
length is equal to the magnitude of the number. This would require 
O(2O(m+n)) time. So the reduction would stop being polynomial-
time if the numbers were written in unary. 

Consider a variant of the Subset-Sum problem where all input 
numbers are written in unary. Call this new problem Subset-Sum-
Unary. This problem can actually be solved in time polynomial in 
the size of the input, using a simple dynamic programming algorithm. 
As a result, the Subset-Sum problem is what’s known as weakly NP-
hard — if the numbers are written in unary, it’s not NP-hard at all. 
By contrast, a problem is strongly NP-hard if the problem is hard 
even when the numbers are written in unary. 
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