
6.046 Recitation 9: van Emde Boas 

April 23, 2012 

1 Announcements 

•	 Takehomes will be returned at the end of recitation today. 

•	 Problem set 7 is released, due next Wednesday. 

•	 There is a survey and a link has been posted to Piazza; please respond. It’s completely anonymous 
and we’d love to get feedback so we can improve the course for the last month or so of term. 

2 Review: The van Emde Boas structure 

vEB data structure stores a set S of integers, which is a subset of U = {0, 1, . . . , u − 1}. It supports the 
following operations: 

•	 Insert(S, x), Delete(S, x), Predecessor(S, x), Successor(S, x) in O(lg lg u) time 

•	 Min(S, x) in constant time 

2.1 Overall idea 

√ √ •	 Split the range into u chunks of size u each; each chunk is governed by a smaller vEB structure on √ 
the range of size u. 
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•	 Store the overall minimum and maximum outside of the rest of the structure (not stored in any sub-
clusters). 

√ •	 “Summary” structure is a vEB structure of on a range of u where S.summary[c] is 1 when cluster c 
is nonempty. 

1 



· · ·

size-
√
u array

vEB(
√
u) vEB(

√
u) vEB(

√
u)· · ·

Min Max

vEB(
√
u)

summary

2.2 Pseudocode 

√ √ 
In this section, we will generally use x = c u + i, where c, i < u. c is the cluster number of x, and i is the 
corresponding index into that cluster. 

√ 
Each vEB structure S has the fields S.min, S.max, S.cluster (an array of pointers to the individual u 
sub-clusters), and S.summary. 

2.2.1 Predecessor and Successor 

Successor(S, x):
 

1 if S is empty: return Nil
 
2 if x < S.min: return S.min
 
3 if x < S.cluster[c].max:
√ 
4 return c u + Successor(S.cluster[c], i) 
5 else 

'6 c = Successor(S.summary, c) 
7 if c' is Nil: return S.max 
8 else √'9 return c u + S.cluster[c'].min 

Intuition for Successor: in the big picture, there are three cases – the successor of x, if it exists, is either 
the minimum of the structure, in the same cluster as x, or in the next cluster to the right. Overall, the 
pseudocode is basically handling each of these cases individually. 

Predecessor is identical to Successor, but switching minimums and maximums as appropriate. 
√ 

The recurrence for this procedure is T (u) = T ( u) + O(1), which is O(lg lg u) as seen in lecture. 
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2.2.2 Insert 

Insert(S, x):
 

1 if S is empty: S.min = S.max = x
 
2 if x < S.min: swap x and S.min and continue.
 
3 if x ≥ S.max: swap x and S.max and continue.
 
4 if S.cluster[c] is empty:
 
5 Insert(S.summary, c)
 
6 Insert(S.cluster[c], i)
 

There is at most one recursive call for any given input: if we ever need to call line 5, then line 6 is guaranteed
 √ 
to take constant time. Therefore the recurrence for this is likewise T (u) = T ( u) + O(1). 

2.2.3 Delete 

Delete(S, x): 

1 if this makes S empty: set S.min = S.max = Nil 
2 if x = S.min: 

' 3 c = S.summary.min 
' 4 if c is Nil: set S.min = S.max
 

5 else
 
6 S.min = S.cluster[c ' ].min
 
7 Delete(S.cluster[c ' ], S.min)
 
8 if S.cluster[c ' ].min = Nil: // Did we make the cluster empty?
 
9 Delete(S.summary, c ' )
 

10 if x = S.max, do the same as the above, but with max instead of min 
11 else √ 
12 Delete(S.cluster[c], i), where x = c u + i 
13 if S.cluster[c].min = Nil: 
14 Delete(S.summary, c) 

Delete is slightly more complicated than the others; we must consider the cases: 

•	 where the deleted element is the only element of the vEB structure, thus leaving it empty, 

•	 where it is the minimum element but not the only one, meaning we have to find the smallest remaining 
element after x is deleted, 

•	 an analogous case where the maximum element is deleted, 

•	 and the usual case where we need to delete x from the cluster containing it. 

The only cases where there are two recursive calls to Delete are in each of the cases in which the deletion 
makes the cluster containing the deleted element empty; however, we know that that takes constant time, √ 
so the recurrence is still T (u) = T ( u) + O(1). 

3 Space complexity of vEB 

We want to make sure that this recursive structure doesn’t take up too much space. In this portion we will 
show that the vEB data structure takes O(u) space. 
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To figure out how much space the data structure takes up, we can look at how much space each of the 
components of the van Emde Boas data structure takes. 

•	 The separately stored minimum and maximum elements, which take O(1) space (we assume that each 
integer fits in a single word of memory). 

√ •	 The sub-clusters, of which there are u, each of which takes up the amount of space taken by a vEB √	 √ √ 
structure on a range of u. In other words, the total space taken by these is uS( u). 

√ √ •	 The summary structure, which is a vEB structure of on a range of u; this takes S( u) space. 
√ √ •	 An array storing pointers to each of the u clusters, which takes up u space.
 

√ √ √
 
Summing all of these items together, we get the space recurrence S(u) = ( u + 1)S( u) + u. 

We can show that this is linear by substitution. Suppose that S(k) < c1k − c2 for all k < u. 

Then 

√ √ √ 
S(u) < ( u + 1)(c1 u − c2) + u 

√ √ √ 
= c1u − c2 u + c1 u − c2 + u 

√ 
= c1u − c2 − u(c2 − c1 − 1) 

We can pick c1 and c2 appropriately so that c2 − c1 − 1 > 0 and so that the base case is satisfied, and
 
therefore the space taken is O(u).
 

Likewise, we can show that the space is Ω(u) by assuming S(k) > ck for all k < u.
 

Then
 

√ √ √ 
S(u) > ( u + 1)(c u) + u 

√ 
= cu + (c + 1) u 

> cu 

Reducing the space taken 

Though O(u) space is good, in the case where the universe is large and the size of S is small, we can probably 
do better than to take up size of space equal to the size of the whole universe. 

Idea: reduce the amount of space taken up by the structure by making the following changes: 

•	 Don’t store the empty clusters; create clusters on demand instead, so the only clusters taking up space 
are the ones that acutally have elements in them. 

•	 Instead of storing S.cluster as an array of pointers, store it as a dynamic hash table whose keys are 
the cluster numbers (and whose values are pointers to the clusters). 

The dynamic hash table is implemented with table doubling, as described in CLRS 17.4. We assume simple 
uniform hashing in this case for an expected running time of O(1) for all operations. 

The new method of storing things requires some modifications to the procedures we had before. 
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4.1 Modifications 

4.1.1 Predecessor and Successor 

The pseudocode and process for getting the predecessor and successor of some element basically remains 
exactly the same; the only difference is that when we used to reference S.cluster[c] as a pointer into some 
portion of an array, all such references are now hash table lookups. 

4.1.2 Insert 

The key difference for Insert is that when we are trying to insert into either a vEB structure or one of 
its clusters and the relevant structure is empty, rather than simply inserting it we need to create a new 
structure. 

Overall, if S is empty before x is inserted, we need to create a new empty vEB structure with all fields set 
to Nil except for S.min and S.max, which are set to x once x is inserted. 

In the case where x is inserted into a previously empty cluster, we also need to create a new cluster containing 
only x; the additional step required here is also to insert a pointer to the new cluster into the dynamic hash 
table S.cluster. 

4.1.3 Delete 

Likewise with Delete, we need to delete the relevant cluster every time the deletion causes some cluster 
to become empty; we also need to remove the relevant key from the hash table. This could happen to the 
cluster we are deleting the element from, the summary cluster of the top-level structure, or the entirety of 
the vEB structure S. 

4.2 Running Time 

Most of the time taken by operations is the same as it was in the previous version of the vEB structure. 
There are a few changes: 

•	 In the predecessor and successor problems, array lookups are replaced with hash table lookups. 

•	 In each of Insert and Delete, there is also a constant number of hash table operations added to the 
modified procedures. 

Each of these changes adds at most an expected constant time additional overhead, meaning the running 
time is now expected O(lg lg u) for each of these operations. 

4.3 Space Complexity 

Analogously to what was mentioned earlier, the components of the vEB structure that take up space in this 
new condensed vEB structure are: 

•	 Separately stored minimum and maximum elements, which takes O(1) space. 

•	 The smaller vEB clusters, all of which are known to be nonempty. 

•	 The summary structure, which is also a smaller vEB structure. 

•	 The hash table storing pointers to the nonempty clusters. 
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Now we can account for how much space is taken up by each of these components. As before, the minimum 
and maximum take up O(1) space. 

Because we are only storing clusters that are nonempty, there are at most as many “descendant” clusters 
(vEB structures of size less than u) as there are elements in S. 

We can “charge” the space cost of each descendant cluster to one of the elements in S, the amount of space 
taken is O(n), if n = |S|; now we just need to account for the summary and the hash tables. 

The sum total size of all hash tables is proportional to the number of nonempty clusters that exist, and 
so this only adds a constant amount of overhead to the space required; for a similar reason, the summary 
structures add only constant overhead. 
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