6.045: Automata, Computability, and Complexity (GITCS)

Class 17
Nancy Lynch

Today

- Probabilistic Turing Machines and Probabilistic Time Complexity Classes
- Now add a new capability to standard TMs: random choice of moves.
- Gives rise to new complexity classes: BPP and RP
- Topics:
- Probabilistic polynomial-time TMs, BPP and RP
- Amplification lemmas
- Example 1: Primality testing
- Example 2: Branching-program equivalence
- Relationships between classes
- Reading:
- Sipser Section 10.2

Probabilistic Polynomial-Time Turing Machines, BPP and RP

Probabilistic Polynomial-Time TM

- New kind of NTM, in which each nondeterministic step is a coin flip: has exactly 2 next moves, to each of which we assign probability $1 / 2$.
- Example:
- To each maximal branch, we assign a probability:

$$
1 / 2 \times 1 / 2 \times \ldots \times 1 / 2
$$

number of coin flips on the branch

- Has accept and reject states, as for NTMs.

Computation on input w

- Now we can talk about probability of acceptance or rejection, on input w.

Probabilistic Poly-Time TMs

- Probability of acceptance =

$$
\Sigma_{\mathrm{b} \text { an accepting branch }} \operatorname{Pr}(\mathrm{b})
$$

- Probability of rejection =

$$
\Sigma_{\mathrm{b} \text { a rejecting branch }} \operatorname{Pr}(\mathrm{b})
$$

- Example:
- Add accept/reject information
- Probability of acceptance $=1 / 16+1 / 8$ $+1 / 4+1 / 8+1 / 4=13 / 16$
- Probability of rejection $=1 / 16+1 / 8=$ 3/16
- We consider TMs that halt (either accept or reject) on every branch---deciders.
- So the two probabilities total 1.

Computation on input w

Probabilistic Poly-Time TMs

- Time complexity:
- Worst case over all branches, as usual.
- Q: What good are probabilistic TMs?
- Random choices can help solve some problems efficiently.
- Good for getting estimates---arbitrarily accurate, based on the number of choices.
- Example: Monte Carlo estimation of areas
- E.g, integral of a function f.
- Repeatedly choose a random point (x, y) in the rectangle.
- Compare y with $f(x)$.
- Fraction of trials in which $y \leq f(x)$ can be used to estimate the integral of f.

Probabilistic Poly-Time TMs

- Random choices can help solve some problems efficiently.
- We'll see 2 languages that have efficient probabilistic estimation algorithms.
- Q: What does it mean to estimate a language?
- Each w is either in the language or not; what does it mean to "approximate" a binary decision?
- Possible answer: For "most" inputs w, we always get the right answer, on all branches of the probabilistic computation tree.
- Or: For "most" w, we get the right answer with high probability.
- Better answer: For every input w, we get the right answer with high probability.

Probabilistic Poly-Time TMs

- Better answer: For every input w, we get the right answer with high probability.
- Definition: A probabilistic TM decider M decides language L with error probability ε if
$-\mathrm{w} \in \mathrm{L}$ implies that $\operatorname{Pr}[\mathrm{M}$ accepts w$] \geq 1-\varepsilon$, and
$-\mathrm{w} \notin \mathrm{L}$ implies that $\operatorname{Pr}[\mathrm{M}$ rejects w$] \geq 1-\varepsilon$.
- Definition: Language L is in BPP (Bounded-error Probabilistic Polynomial time) if there is a probabilistic polynomial-time TM that decides L with error probability $1 / 3$.
- Q: What's so special about $1 / 3$?
- Nothing. We would get an equivalent definition (same language class) if we chose ε to be any value with $0<\varepsilon<$ $1 / 2$.
- We'll see this soon---Amplification Theorem

Probabilistic Poly-Time TMs

- Another class, RP, where the error is 1-sided:
- Definition: Language L is in RP (Random Polynomial time) if there is a a probabilistic polynomial-time TM that decides L, where:
$-w \in L$ implies that $\operatorname{Pr}[M$ accepts $w] \geq 1 / 2$, and
$-\mathrm{w} \notin \mathrm{L}$ implies that $\operatorname{Pr}[\mathrm{M}$ rejects w$]=1$.
- Thus, absolutely guaranteed to be correct for words not in L---always rejects them.
- But, might be incorrect for words in L---might mistakenly reject these, in fact, with probability up to $1 / 2$.
- We can improve the $1 / 2$ to any larger constant < 1 , using another Amplification Theorem.
- Definition: Language L is in RP (Random Polynomial time) if there is a a probabilistic polynomial-time TM that decides L, where:
$-w \in L$ implies that $\operatorname{Pr}[M$ accepts $w] \geq 1 / 2$, and
$-\mathrm{w} \notin \mathrm{L}$ implies that $\operatorname{Pr}[\mathrm{M}$ rejects w$]=1$.
- Always correct for words not in L.
- Might be incorrect for words in L---can reject these with probability up to $1 / 2$.
- Compare with nondeterministic TM acceptance:
$-\mathrm{w} \in \mathrm{L}$ implies that there is some accepting path, and
$-\mathrm{w} \notin \mathrm{L}$ implies that there is no accepting path.

Amplification Lemmas

Amplification Lemmas

- Lemma: Suppose that M is a PPT-TM that decides L with error probability ε, where $0 \leq \varepsilon<1 / 2$.
Then for any $\varepsilon^{\prime}, 0 \leq \varepsilon^{\prime}<1 / 2$, there exists M^{\prime}, another PPTTM, that decides L with error probability ε^{\prime}.
- Proof idea:
- M^{\prime} simulates M many times and takes the majority value for the decision.
- Why does this improve the probability of getting the right answer?
- E.g., suppose $\varepsilon=1 / 3$; then each trial gives the right answer at least $2 / 3$ of the time (with $2 / 3$ probability).
- If we repeat the experiment many times, then with very high probability, we'll get the right answer a majority of the times.
- How many times? Depends on ε and ε^{\prime}.

Amplification Lemmas

- Lemma: Suppose that M is a PPT-TM that decides L with error probability ε, where $0 \leq \varepsilon<1 / 2$.
Then for any $\varepsilon^{\prime}, 0 \leq \varepsilon^{\prime}<1 / 2$, there exists M^{\prime}, another PPTTM, that decides L with error probability ε^{\prime}.
- Proof idea:
- M^{\prime} simulates M many times, takes the majority value.
- E.g., suppose $\varepsilon=1 / 3$; then each trial gives the right answer at least $2 / 3$ of the time (with $2 / 3$ probability).
- If we repeat the experiment many times, then with very high probability, we'll get the right answer a majority of the times.
- How many times? Depends on ε and ε^{\prime}.
$-2 k$, where $(4 \varepsilon(1-\varepsilon))^{k} \leq \varepsilon^{\prime}$, suffices.
- In other words $\mathrm{k} \geq\left(\log _{2} \varepsilon^{\prime}\right) /\left(\log _{2}(4 \varepsilon(1-\varepsilon))\right)$.
- See book for calculations.

Characterization of BPP

- Theorem: L $\in B P P$ if and only for, for some $\varepsilon, 0 \leq \varepsilon$ $<1 / 2$, there is a PPT-TM that decides L with error probability ε.
- Proof:
\Rightarrow If $L \in B P P$, then there is some PPT-TM that decides L with error probability $\varepsilon=1 / 3$, which suffices.
\Leftarrow If for some ε, a PPT-TM decides L with error probability ε, then by the Lemma, there is a PPT-TM that decides L with error probability $1 / 3$; this means that $L \in B P P$.

Amplification Lemmas

- For RP, the situation is a little different:
- If $w \in L$, then $\operatorname{Pr}[M$ accepts w] could be equal to $1 / 2$.
- So after many trials, the majority would be just as likely to be correct or incorrect.
- But this isn't useless, because when $w \notin L$, the machine always answers correctly.
- Lemma: Suppose M is a PPT-TM that decides L,
$0 \leq \varepsilon<1$, and
$w \in L$ implies $\operatorname{Pr}[M$ accepts $w] \geq 1-\varepsilon$.
$w \notin L$ implies $\operatorname{Pr}[M$ rejects $w]=1$.
Then for any $\varepsilon^{\prime}, 0 \leq \varepsilon^{\prime}<1$, there exists M^{\prime}, another PPT-TM, that decides L with:
$\mathrm{w} \in \mathrm{L}$ implies $\operatorname{Pr}[\mathrm{M}$ accepts w$] \geq 1-\varepsilon^{\prime}$. $w \notin L$ implies $\operatorname{Pr}[M$ rejects $w]=1$.

Amplification Lemmas

- Lemma: Suppose M is a PPT-TM that decides $\mathrm{L}, 0 \leq \varepsilon<1$,
$w \in L$ implies $\operatorname{Pr}[M$ accepts $w] \geq 1-\varepsilon$.
$w \notin L$ implies $\operatorname{Pr}[M$ rejects $w]=1$.
Then for any $\varepsilon^{\prime}, 0 \leq \varepsilon^{\prime}<1$, there exists M^{\prime}, another PPT-TM, that decides L with:
$\mathrm{w} \in \mathrm{L}$ implies $\operatorname{Pr}\left[\mathrm{M}^{\prime}\right.$ accepts w$] \geq 1-\varepsilon^{\prime}$.
$\mathrm{w} \notin \mathrm{L}$ implies $\operatorname{Pr}\left[\mathrm{M}^{\prime}\right.$ rejects w$]=1$.
- Proof idea:
- M': On input w:
- Run k independent trials of M on w.
- If any accept, then accept; else reject.
- Here, choose k such that $\varepsilon^{k} \leq \varepsilon^{\prime}$.
- If $w \notin \mathrm{~L}$ then all trials reject, so M^{\prime} rejects, as needed.
- If $w \in L$ then each trial accepts with probability $\geq 1-\varepsilon$, so

Prob(at least one of the k trials accepts)
$=1-\operatorname{Prob}($ all k reject $) \geq 1-\varepsilon^{k} \geq 1-\varepsilon^{\prime}$.

Characterization of RP

- Lemma: Suppose M is a PPT-TM that decides $\mathrm{L}, 0 \leq \varepsilon<1$,
$w \in L$ implies $\operatorname{Pr}[M$ accepts $w] \geq 1-\varepsilon$.
$w \notin L$ implies $\operatorname{Pr}[M$ rejects $w]=1$.
Then for any $\varepsilon^{\prime}, 0 \leq \varepsilon^{\prime}<1$, there exists M^{\prime}, another PPTTM, that decides L with:
$w \in L$ implies $\operatorname{Pr}\left[M^{\prime}\right.$ accepts $\left.w\right] \geq 1-\varepsilon^{\prime}$.
$\mathrm{w} \notin \mathrm{L}$ implies $\operatorname{Pr}\left[\mathrm{M}^{\prime}\right.$ rejects w$]=1$.
- Theorem: $\mathrm{L} \in \mathrm{RP}$ iff for some $\varepsilon, 0 \leq \varepsilon<1$, there is a PPTTM that decides L with:
$w \in L$ implies $\operatorname{Pr}[M$ accepts $w] \geq 1-\varepsilon$.
$w \notin L$ implies $\operatorname{Pr}[M$ rejects $w]=1$.

RP vs. BPP

- Lemma: Suppose M is a PPT-TM that decides $\mathrm{L}, 0 \leq \varepsilon<1$, $w \in L$ implies $\operatorname{Pr}[M$ accepts $w] \geq 1-\varepsilon$. $w \notin L$ implies $\operatorname{Pr}[M$ rejects $w]=1$.
Then for any $\varepsilon^{\prime}, 0 \leq \varepsilon^{\prime}<1$, there exists M^{\prime}, another PPT-TM, that decides L with:
$w \in L$ implies $\operatorname{Pr}\left[M^{\prime}\right.$ accepts $\left.w\right] \geq 1-\varepsilon^{\prime}$.
$\mathrm{w} \notin \mathrm{L}$ implies $\operatorname{Pr}\left[\mathrm{M}^{\prime}\right.$ rejects w$]=1$.
- Theorem: $\mathrm{RP} \subseteq \mathrm{BPP}$.
- Proof:
- Given $A \in R P$, get (by def. of RP) a PPT-TM M with:
$w \in L$ implies $\operatorname{Pr}[M$ accepts $w] \geq 1 / 2$.
$w \notin L$ implies $\operatorname{Pr}[M$ rejects $w]=1$.
- By Lemma, get another PPT-TM for A, with:
$w \in L$ implies $\operatorname{Pr}[M$ accepts $w] \geq 2 / 3$.
$w \notin L$ implies $\operatorname{Pr}[M$ rejects $w]=1$.
- Implies A \in BPP, by definition of BPP.

RP, co-RP, and BPP

- Definition: coRP $=\left\{L \mid L^{c} \in R P\right\}$
- coRP contains the languages L that can be decided by a PPT-TM that is always correct for w $\in L$ and has error probability at most $1 / 2$ for $w \notin L$.
- That is, L is in coRP if there is a PPT-TM that decides L, where:
$-w \in L$ implies that $\operatorname{Pr}[M$ accepts $w]=1$, and
$-\mathrm{w} \notin \mathrm{L}$ implies that $\operatorname{Pr}[\mathrm{M}$ rejects w$] \geq 1 / 2$.
- Theorem: coRP $\subseteq B P P$.
- So we have:

Example 1: Primality Testing

Primality Testing

- PRIMES $=\{<\mathrm{n}>\mid \mathrm{n}$ is a natural number >1 and n cannot be factored as q r , where $1<\mathrm{q}, \mathrm{r}<\mathrm{n}\}$
- COMPOSITES $=\{\langle n>| n>1$ and n can be factored... $\}$
- We will show an algorithm demonstrating that PRIMES \in coRP.
- So COMPOSITES \in RP, and both \in BPP.

- This is not exciting, because it is now known that both are in P. [Agrawal, Kayal, Saxema 2002]
- But their poly-time algorithm is hard, whereas the probabilistic algorithm is easy.
- And anyway, this illustrates some nice probabilistic methods.

Primality Testing

- PRIMES $=\{<n>\mid n$ is a natural number >1 and n cannot be factored as q r , where $1<\mathrm{q}, \mathrm{r}<\mathrm{n}\}$
- COMPOSITES $=\{<\mathrm{n}>\mid \mathrm{n}>1$ and n can be factored... $\}$

- Note:
- Deciding whether n is prime/composite isn't the same as factoring.
- Factoring seems to be a much harder problem; it's at the heart of modern cryptography.

Primality Testing

- PRIMES $=\{<n>\mid n$ is a natural number >1 and n cannot be factored as q r , where $1<\mathrm{q}, \mathrm{r}<\mathrm{n}\}$
- Show PRIMES \in coRP.
- Design PPT-TM (algorithm) M for PRIMES that satisfies:
$-\mathrm{n} \in \operatorname{PRIMES} \Rightarrow \operatorname{Pr}[M$ accepts n$]=1$.
$-n \notin \operatorname{PRIMES} \Rightarrow \operatorname{Pr}[M$ accepts $n] \leq 2^{-k}$.
- Here, k depends on the number of "trials" M makes.
- M always accepts primes, and almost always correctly identifies composites.
- Algorithm rests on some number-theoretic facts about primes (just state them here):

Fermat's Little Theorem

- PRIMES $=\{<n>\mid n$ is a natural number >1 and n cannot be factored as q r , where $1<\mathrm{q}, \mathrm{r}<\mathrm{n}\}$
- Design PPT-TM (algorithm) M for PRIMES that satisfies:
$-\mathrm{n} \in \operatorname{PRIMES} \Rightarrow \operatorname{Pr}[M$ accepts $n]=1$.
$-\mathrm{n} \notin \operatorname{PRIMES} \Rightarrow \operatorname{Pr}[M$ accepts $n] \leq 2^{-k}$.
- Fact 1: Fermat's Little Theorem: If n is prime and $\mathrm{a} \in \mathrm{Z}_{\mathrm{n}}{ }^{+}$ then $\mathrm{a}^{\mathrm{n}-1} \equiv 1 \bmod \mathrm{n}$.
- Example: $\mathrm{n}=5, \mathrm{Z}_{\mathrm{n}}{ }^{+}=\{1,2,3,4\}$.
$-a=1: 1^{5-1}=1^{4}=1 \equiv 1 \bmod 5$.
$-a=2: 2^{5-1}=2^{4}=16 \equiv 1 \bmod 5$.
$-a=3: 3^{5-1}=3^{4}=81 \equiv 1 \bmod 5$.
$-\mathrm{a}=4: 4^{5-1}=4^{4}=256 \equiv 1 \bmod 5$.

Fermat's test

- Design PPT-TM (algorithm) M for PRIMES that satisfies:
$-\mathrm{n} \in \mathrm{PRIMES} \Rightarrow \operatorname{Pr}[\mathrm{M}$ accepts n$]=1$.
$-\mathrm{n} \notin \operatorname{PRIMES} \Rightarrow \operatorname{Pr}[M$ accepts $n] \leq 2^{-k}$.
- Fermat: If n is prime and $a \in Z_{n}^{+}$then $a^{n-1} \equiv 1 \bmod n$.
- We can use this fact to identify some composites without factoring them:
- Example: $\mathrm{n}=8, \mathrm{a}=3$.
$-3^{8-1}=3^{7} \equiv 3 \bmod 8$, not $1 \bmod 8$.
- So 8 is composite.
- Algorithm attempt 1:
- On input n:
- Choose a number a randomly from $Z_{n}{ }^{+}=\{1, \ldots, n-1\}$.
- If $a^{n-1} \equiv 1 \bmod n$ then accept (passes Fermat test).
- Else reject (known not to be prime).

Algorithm attempt 1

- Design PPT-TM (algorithm) M for PRIMES that satisfies:
$-\mathrm{n} \in \operatorname{PRIMES} \Rightarrow \operatorname{Pr}[M$ accepts n$]=1$.
$-\mathrm{n} \notin \operatorname{PRIMES} \Rightarrow \operatorname{Pr}[M$ accepts $n] \leq 2^{-k}$.
- Fermat: If n is prime and $\mathrm{a} \in \mathrm{Z}_{\mathrm{n}}^{+}$then $\mathrm{a}^{\mathrm{n}-1} \equiv 1 \mathrm{mod} \mathrm{n}$.
- First try: On input n:
- Choose number a randomly from $Z_{n}{ }^{+}=\{1, \ldots, n-1\}$.
- If $\mathrm{a}^{\mathrm{n}-1} \equiv 1 \bmod \mathrm{n}$ then accept (passes Fermat test).
- Else reject (known not to be prime).
- This guarantees:
$-\mathrm{n} \in \operatorname{PRIMES} \Rightarrow \operatorname{Pr}[\mathrm{M}$ accepts n$]=1$.
$-\mathrm{n} \notin \mathrm{PRIMES} \Rightarrow$??
- Don't know. It could pass the test, and be accepted erroneously.
- The problem isn't helped by repeating the test many times, for many values of a---because there are some non-prime n's that pass the test for all values of a.

Carmichael numbers

- Fermat: If n is prime and $\mathrm{a} \in \mathrm{Z}_{\mathrm{n}}^{+}$then $\mathrm{a}^{\mathrm{n}-1} \equiv 1 \bmod \mathrm{n}$.
- On input n:
- Choose a randomly from $Z_{n}{ }^{+}=\{1, \ldots, n-1\}$.
- If $\mathrm{a}^{\mathrm{n}-1} \equiv 1$ mod n then accept (passes Fermat test).
- Else reject (known not to be prime).
- Carmichael numbers: Non-primes that pass all Fermat tests, for all values of a.
- Fact 2: Any non-Carmichael composite number fails at least half of all Fermat tests (for at least half of all values of a).
- So for any non-Carmichael composite, the algorithm correctly identifies it as composite, with probability $\geq 1 / 2$.
- So, we can repeat k times to get more assurance.
- Guarantees:
$-\mathrm{n} \in \operatorname{PRIMES} \Rightarrow \operatorname{Pr}[\mathrm{M}$ accepts n$]=1$.
- n a non-Carmichael composite number $\Rightarrow \operatorname{Pr}[M$ accepts $n] \leq 2^{-k}$.
- n a Carmichael composite number $\Rightarrow \operatorname{Pr}[\mathrm{M}$ accepts n$]=1$ (wrong)

Carmichael numbers

- Fermat: If n is prime and $\mathrm{a} \in \mathrm{Z}_{\mathrm{n}}^{+}$then $\mathrm{a}^{\mathrm{n}-1} \equiv 1 \bmod \mathrm{n}$.
- On input n:
- Choose a randomly from $Z_{n}{ }^{+}=\{1, \ldots, n-1\}$.
- If $\mathrm{a}^{\mathrm{n}-1} \equiv 1$ mod n then accept (passes Fermat test).
- Else reject (known not to be prime).
- Carmichael numbers: Non-primes that pass all Fermat tests.
- Algorithm guarantees:
$-\mathrm{n} \in \operatorname{PRIMES} \Rightarrow \operatorname{Pr}[\mathrm{M}$ accepts n$]=1$.
- n a non-Carmichael composite number $\Rightarrow \operatorname{Pr}[\mathrm{M}$ accepts n$] \leq 2^{-\mathrm{k}}$.
- n a Carmichael composite number $\Rightarrow \operatorname{Pr}[\mathrm{M}$ accepts n$]=1$.
- We must do something about the Carmichael numbers.
- Use another test, based on:
- Fact 3: For every Carmichael composite n, there is some b $\neq 1$, -1 such that $\mathrm{b}^{2} \equiv 1 \bmod \mathrm{n}$ (that is, 1 has a nontrivial square root, mod n). No prime has such a square root.

Primality-testing algorithm

- Fact 3: For every Carmichael composite n, there is some b $\neq 1,-1$ such that $b^{2} \equiv 1 \bmod n$. No prime has such a square root.
- Primality-testing algorithm: On input n :
- If $\mathrm{n}=1$ or n is even: Give the obvious answer (easy).
- If n is odd and >1 : Choose a randomly from $Z_{n}{ }^{+}$.
- (Fermat test) If $\mathrm{a}^{\mathrm{n}-1}$ is not congruent to 1 mod n then reject.
- (Carmichael test) Write $\mathrm{n}-1=2^{\mathrm{h}} \mathrm{s}$, where s is odd (factor out twos).
- Consider successive squares, $a^{s,} a^{2 s}, a^{4 s}, a^{8 s} \ldots, a^{2 \wedge h}=a^{n-1}$.
- If all terms are $\equiv 1$ mod n, then accept.
- If not, then find the last one that isn't congruent to 1 .
- If it's $\equiv-1 \bmod n$ then accept else reject.

Primality-testing algorithm

- If n is odd and >1 :
- Choose a randomly from $Z_{n}{ }^{+}$.
- (Fermat test) If $\mathrm{a}^{\mathrm{n}-1}$ is not congruent to 1 mod n then reject.
- (Carmichael test) Write $\mathrm{n}-1=2^{\mathrm{h}} \mathrm{s}$, where s is odd.
- Consider successive squares, $a^{s,} a^{2 s}, a^{4 s}, a^{8 s} \ldots, a^{2 \wedge h}=a^{n-1}$.
- If all terms are $\equiv 1 \bmod \mathrm{n}$, then accept.
- If not, then find the last one that isn't congruent to 1 .
- If it's $\equiv-1 \bmod n$ then accept else reject.
- Theorem: This algorithm satisfies:
$-\mathrm{n} \in$ PRIMES $\Rightarrow \operatorname{Pr}[$ accepts n$]=1$.
$-\mathrm{n} \notin$ PRIMES $\Rightarrow \operatorname{Pr}[$ accepts $n] \leq 1 / 2$.
- By repeating it k times, we get:
$-\mathrm{n} \notin$ PRIMES $\Rightarrow \operatorname{Pr}[$ accepts n$] \leq(1 / 2)^{k}$.

Primality-testing algorithm

- If n is odd and >1 :
- Choose a randomly from $Z_{n}{ }^{+}$.
- (Fermat test) If $\mathrm{a}^{\mathrm{n}-1}$ is not congruent to 1 mod n then reject.
- (Carmichael test) Write $\mathrm{n}-1=2^{\mathrm{h}} \mathrm{s}$, where s is odd.
- Consider successive squares, $a^{s,} a^{2 s}, a^{4 s}, a^{8 s} \ldots, a^{2 \wedge h}=a^{n-1}$.
- If all terms are $\equiv 1 \bmod \mathrm{n}$, then accept.
- If not, then find the last one that isn't congruent to 1 .
- If it's $\equiv-1 \bmod n$ then accept else reject.
- Theorem: This algorithm satisfies:
$-\mathrm{n} \in \mathrm{PRIMES} \Rightarrow \operatorname{Pr}[$ accepts n$]=1$.
$-\mathrm{n} \notin \operatorname{PRIMES} \Rightarrow \operatorname{Pr}[$ accepts $n] \leq 1 / 2$.
- Proof: Suppose n is odd and >1.

Proof

- If n is odd and >1 :
- Choose a randomly from $Z_{n}{ }^{+}$.
- (Fermat test) If $\mathrm{a}^{\mathrm{n}-1}$ is not congruent to 1 mod n then reject.
- (Carmichael test) Write $\mathrm{n}-1=2^{\mathrm{h}} \mathrm{s}$, where s is odd.
- Consider successive squares, $a^{s,} a^{2 s}, a^{4 s}, a^{8 s} \ldots, a^{2 \wedge h s}=a^{n-1}$.
- If all terms are $\equiv 1 \mathrm{mod} \mathrm{n}$, then accept.
- If not, then find the last one that isn't congruent to 1 .
- If it's $\equiv-1 \bmod n$ then accept else reject.
- Proof that $n \in \operatorname{PRIMES} \Rightarrow \operatorname{Pr}[$ accepts $n]=1$.
- Show that, if the algorithm rejects, then n must be composite.
- Reject because of Fermat: Then not prime, by Fact 1 (primes pass).
- Reject because of Carmichael: Then 1 has a nontrivial square root b, $\bmod n$, so n isn't prime, by Fact 3.
- Let b be the last term in the sequence that isn't congruent to 1 mod n.
- b^{2} is the next one, and is $\equiv 1 \bmod n$, so b is a square root of $1, \bmod n$.

Proof

- If n is odd and > 1:
- Choose a randomly from $Z_{n}{ }^{+}$.
- (Fermat test) If $\mathrm{a}^{\mathrm{n}-1}$ is not congruent to 1 mod n then reject.
- (Carmichael test) Write $\mathrm{n}-1=2^{\mathrm{h}} \mathrm{s}$, where s is odd.
- Consider successive squares, $a^{s,} a^{2 s}, a^{4 s}, a^{8 s} \ldots, a^{2 \wedge h s}=a^{n-1}$.
- If all terms are $\equiv 1 \bmod \mathrm{n}$, then accept.
- If not, then find the last one that isn't congruent to 1.
- If it's $\equiv-1 \bmod n$ then accept else reject.
- Proof that $\mathrm{n} \notin$ PRIMES $\Rightarrow \operatorname{Pr}[$ accepts n$] \leq 1 / 2$.
- Suppose n is a composite.
- If n is not a Carmichael number, then at least half of the possible choices of a fail the Fermat test (by Fact 2).
- If n is a Carmichael number, then Fact 3 says that some b fails the Carmichael test (is a nontrivial square root).
- Actually, when we generate b using a as above, at least half of the possible choices of a generate bs that fail the Carmichael test.
- Why: Technical argument, in Sipser, p. 374-375.

Primality-testing algorithm

- So we have proved:
- Theorem: This algorithm satisfies:
$-\mathrm{n} \in \operatorname{PRIMES} \Rightarrow \operatorname{Pr}[$ accepts n$]=1$.
$-\mathrm{n} \notin \operatorname{PRIMES} \Rightarrow \operatorname{Pr}[$ accepts $n] \leq 1 / 2$.
- This implies:
- Theorem: PRIMES \in coRP.
- Repeating k times, or using an amplification lemma, we get:
$-\mathrm{n} \in \operatorname{PRIMES} \Rightarrow \operatorname{Pr}[$ accepts n$]=1$.
$-\mathrm{n} \notin$ PRIMES $\Rightarrow \operatorname{Pr}[$ accepts $n] \leq(1 / 2)^{k}$.
- Thus, the algorithm might sometimes make mistakes and classify a composite as a prime, but the probability of doing this can be made arbitrarily low.
- Corollary: COMPOSITES \in RP.

Primality-testing algorithm

- Theorem: PRIMES \in coRP.
- Corollary: COMPOSITES \in RP.
- Corollary: Both PRIMES and COMPOSITES \in BPP.

Example 2: Branching-Program Equivalence

Branching Programs

- Branching program: A variant of a decision tree. Can be a DAG, not just a tree:
- Describes a Boolean function of a set $\left\{x_{1}, x_{2}, x_{3}, \ldots\right\}$ of Boolean variables.
- Restriction: Each variable appears at most once on each path.
- Example: $x_{1} x_{2} x_{3}$

x_{1}	0	0	
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Branching Programs

- Branching program representation for Boolean functions is used by system modeling and analysis tools, for systems in which the state can be represented using just Boolean variables.
- Programs called Binary Decision Diagrams (BDDs).
- Analyzing a model involves exploring all the states, which in turn involves exploring all the paths in the diagram.
- Choosing the "right" order of evaluating the variables can make a big difference in cost (running time).
- Q: Given two branching programs, B_{1} and B_{2}, do they compute the same Boolean function?
- That is, do the same values for all the variables always lead to the same result in both programs?

Branching-Program Equivalence

- Q: Given two branching programs, B_{1} and B_{2}, do they compute the same Boolean function?
- Express as a language problem:
$E Q_{B P}=\left\{<B_{1}, B_{2}\right\rangle \mid B_{1}$ and B_{2} are BPs that compute the same Boolean function \}.
- Theorem: $\mathrm{EQ}_{\mathrm{BP}}$ is in coRP $\subseteq \mathrm{BPP}$.
- Note: Need the restriction that a variable appears at most once on each path. Otherwise, the problem is coNPcomplete.
- Proof idea:
- Pick random values for x_{1}, x_{2}, \ldots and see if they lead to the same answer in B_{1} and B_{2}.
- If so, accept; if not, reject.
- Repeat several times for extra assurance.

Branching-Program Equivalence

$E Q_{B P}=\left\{<B_{1}, B_{2}\right\rangle \mid B_{1}$ and B_{2} are BPs that compute the same Boolean function \}

- Theorem: $E Q_{B P}$ is in coRP $\subseteq B P P$.
- Proof idea:
- Pick random values for x_{1}, x_{2}, \ldots and see if they lead to the same answer in B_{1} and B_{2}.
- If so, accept; if not, reject.
- Repeat several times for extra assurance.
- This is not quite good enough:
- Some inequivalent BPs differ on only one assignment to the vars.
- Unlikely that the algorithm would guess this assignment.
- Better proof idea:
- Consider the same BPs but now pretend the domain of values for the variables is Z_{p}, the integers mod p, for a large prime p, rather than just $\{0,1\}$.
- This will let us make more distinctions, making it less likely that we would think B_{1} and B_{2} are equivalent if they aren't.

Branching-Program Equivalence

$E Q_{B P}=\left\{<B_{1}, B_{2}\right\rangle \mid B_{1}$ and B_{2} are BPs that compute the same Boolean function \}

- Theorem: $E Q_{B P}$ is in coRP $\subseteq B P P$.
- Proof idea:
- Pick random values for x_{1}, x_{2}, \ldots and see if they lead to the same answer in B_{1} and B_{2}.
- If so, accept; if not, reject.
- Repeat several times for extra assurance.
- Better proof idea:
- Pretend that the domain of values for the variables is Z_{p}, the integers mod p, for a large prime p, rather than just $\{0,1\}$.
- This lets us make more distinctions, making it less likely that we would think B_{1} and B_{2} are equivalent if they aren't.
- But how do we apply the programs to integers mod p?
- By associating a multi-variable polynomial with each program:

Associating a polynomial with a BP

- Associate a polynomial with each node in the BP, and use the poly associated with the 1-result node as the poly for the entire BP.

Labeling rules

- Top node: Label with polynomial 1.
- Non-top node: Label with sum of polys, one for each incoming edge:
- Edge labeled with 1, from x, labeled with p, contributes $p x$.
- Edge labeled with 0 , from x, labeled with p, contributes $p(1-x)$.

Labeling rules

- Top node: Label with polynomial 1.
- Non-top node: Label with sum of polys, one for each incoming edge:
- Edge labeled with 1, from x labeled with p, contributes p x .
- Edge labeled with 0 , from x labeled with p, contributes $\mathrm{p}(1-\mathrm{x})$.

Associating a polynomial with a BP

- What do these polynomials mean for Boolean values?
- For any particular assignment of $\{0,1\}$ to the variables, each polynomial at each node evaluates to either 0 or 1 (because of their special form).
- The polynomials on the path followed by that assignment all evaluate to 1 , and all others evaluate to 0 .
- The polynomial associated with the entire program evaluates to 1 exactly for the assignments that lead there $=$ those that are assigned value 1 by the program.
- Example: Above.
- The assignments leading to result 1 are:
- Which are exactly the assignments for which the program's polynomial evaluates to 1 .

$$
\begin{aligned}
& x_{1}\left(1-x_{3}\right) x_{2} \\
& +x_{1} x_{3} \\
& +\left(1-x_{1}\right)\left(1-x_{2}\right) x_{3}
\end{aligned}
$$

Branching-Program Equivalence

- Now consider Z_{p}, integers mod p, for a large prime p (much bigger than the number of variables).
- Equivalence algorithm: On input $\left\langle\mathrm{B}_{1}, \mathrm{~B}_{2}\right\rangle$, where both programs use m variables:
- Choose elements $a_{1}, a_{2}, \ldots, a_{m}$ from Z_{p} at random.
- Evaluate the polynomials p_{1} associated with B_{1} and p_{2} associated with B_{2} for $x_{1}=a_{1}, x_{2}=a_{2}, \ldots, x_{m}=a_{m}$.
- Evaluate them node-by-node, without actually constructing all the polynomials for both programs.
- Do this in polynomial time in the size of $\left\langle\mathrm{B}_{1}, \mathrm{~B}_{2}\right\rangle$, LTTR.
- If the results are equal ($\bmod \mathrm{p}$) then accept; else reject.
- Theorem: The equivalence algorithm guarantees:
- If B_{1} and B_{2} are equivalent BPs (for Boolean values) then $\operatorname{Pr}[$ algorithm accepts $n]=1$.
- If B_{1} and B_{2} are not equivalent, then $\operatorname{Pr}[$ algorithm rejects $n] \geq 2 / 3$.

Branching-Program Equivalence

- Equivalence algorithm: On input $\left\langle\mathrm{B}_{1}, \mathrm{~B}_{2}\right\rangle$:
- Choose elements $a_{1}, a_{2}, \ldots, a_{m}$ from Z_{p} at random.
- Evaluate the polynomials p_{1} associated with B_{1} and p_{2} associated with B_{2} for $x_{1}=a_{1}, x_{2}=a_{2}, \ldots, x_{m}=a_{m}$.
- If the results are equal ($\bmod p$) then accept; else reject.
- Theorem: The equivalence algorithm guarantees:
- If B_{1} and B_{2} are equivalent $B P s$ then $\operatorname{Pr}[$ accepts $n]=1$.
- If B_{1} and B_{2} are not equivalent, then $\operatorname{Pr}[$ rejects $n] \geq 2 / 3$.
- Proof idea: (See Sipser, p. 379)
- If B_{1} and B_{2} are equivalent BPs (for Boolean values), then p_{1} and p_{2} are equivalent polynomials over Z_{p}, so always accepts.
- If B_{1} and B_{2} are not equivalent (for Boolean values), then at least $2 / 3$ of the possible sets of choices from Z_{p} yield different values, so $\operatorname{Pr}[$ rejects $n] \geq 2 / 3$.
- Corollary: $E Q_{B P} \in \operatorname{coRP} \subseteq B P P$.

Relationships Between Complexity Classes

Relationships between complexity classes

- We know:

- Also recall:

- From the definitions, RP \subseteq NP and coRP \subseteq coNP.
- So we have:

Relationships between classes

- So we have:

- Q: Where does BPP fit in?

Relationships between classes

- Where does BPP fit?
$-N P \cup \operatorname{coNP} \subseteq B P P$?
- BPP = P ?
- Something in between?
- Many people believe $B P P=R P=\operatorname{coRP}=P$, that is, that randomness doesn't help.

- How could this be?
- Perhaps we can emulate randomness with pseudo-random generators---deterministic algorithms whose output "looks random".
- What does it mean to "look random"?
- A polynomial-time TM can't distinguish them from random.
- Current research!

Next time...

- Cryptography!

MIT OpenCourseWare
http://ocw.mit.edu

$6.045 \mathrm{~J} / 18.400 \mathrm{~J}$ Automata, Computability, and Complexity

Spring 2011

For information about citing these materials or our Terms of Use, visit: hhttp://ocw.mit.edu/terms.

