6.045: Automata, Computability, and Complexity (GITCS)

Class 17 Nancy Lynch

Today

- Probabilistic Turing Machines and Probabilistic Time Complexity Classes
- Now add a new capability to standard TMs: random choice of moves.
- Gives rise to new complexity classes: BPP and RP
- Topics:
 - Probabilistic polynomial-time TMs, BPP and RP
 - Amplification lemmas
 - Example 1: Primality testing
 - Example 2: Branching-program equivalence
 - Relationships between classes
- Reading:
 - Sipser Section 10.2

Probabilistic Polynomial-Time Turing Machines, BPP and RP

Probabilistic Polynomial-Time TM

- New kind of NTM, in which each nondeterministic step is a coin flip: has exactly 2 next moves, to each of which we assign probability 1/2.
- Example:
 - To each maximal branch, we assign a probability:

$$\underbrace{\frac{1_2 \times 1_2 \times \ldots \times 1_2}{2}}_{}$$

number of coin flips on the branch

- Has accept and reject states, as for NTMs.
- Now we can talk about probability of acceptance or rejection, on input w.

• Probability of acceptance =

 $\Sigma_{b \text{ an accepting branch}} \Pr(b)$

• Probability of rejection =

 $\Sigma_{b \text{ a rejecting branch}} \Pr(b)$

- Example:
 - Add accept/reject information
 - Probability of acceptance = 1/16 + 1/8+ 1/4 + 1/8 + 1/4 = 13/16
 - Probability of rejection = 1/16 + 1/8 = 3/16
- We consider TMs that halt (either accept or reject) on every branch---deciders.
- So the two probabilities total 1.

- Time complexity:
 - Worst case over all branches, as usual.
- Q: What good are probabilistic TMs?
- Random choices can help solve some problems efficiently.
- Good for getting estimates---arbitrarily accurate, based on the number of choices.
- Example: Monte Carlo estimation of areas
 - E.g, integral of a function f.
 - Repeatedly choose a random point (x,y) in the rectangle.
 - Compare y with f(x).
 - Fraction of trials in which $y \le f(x)$ can be used to estimate the integral of f.

- Random choices can help solve some problems efficiently.
- We'll see 2 languages that have efficient probabilistic estimation algorithms.
- Q: What does it mean to estimate a language?
- Each w is either in the language or not; what does it mean to "approximate" a binary decision?
- Possible answer: For "most" inputs w, we always get the right answer, on all branches of the probabilistic computation tree.
- Or: For "most" w, we get the right answer with high probability.
- Better answer: For every input w, we get the right answer with high probability.

- Better answer: For every input w, we get the right answer with high probability.
- Definition: A probabilistic TM decider M decides language L with error probability ϵ if
 - $w \in L$ implies that Pr[M accepts w] \geq 1 $\epsilon,$ and
 - w ∉ L implies that Pr[M rejects w] ≥ 1 ε.
- Definition: Language L is in BPP (Bounded-error Probabilistic Polynomial time) if there is a probabilistic polynomial-time TM that decides L with error probability 1/3.
- Q: What's so special about 1/3?
- Nothing. We would get an equivalent definition (same language class) if we chose ε to be any value with 0 < ε < 1/2.
- We'll see this soon---Amplification Theorem

- Another class, RP, where the error is 1-sided:
- **Definition:** Language L is in **RP** (Random Polynomial time) if there is a a probabilistic polynomial-time TM that decides L, where:

– w \in L implies that Pr[M accepts w] \ge 1/2, and

 $- w \notin L$ implies that Pr[M rejects w] = 1.

- Thus, absolutely guaranteed to be correct for words not in L---always rejects them.
- But, might be incorrect for words in L---might mistakenly reject these, in fact, with probability up to ¹/₂.
- We can improve the ½ to any larger constant < 1, using another Amplification Theorem.

RP

- Definition: Language L is in RP (Random Polynomial time) if there is a a probabilistic polynomial-time TM that decides L, where:
 - w \in L implies that Pr[M accepts w] \ge 1/2, and

 $- w \notin L$ implies that Pr[M rejects w] = 1.

- Always correct for words not in L.
- Might be incorrect for words in L---can reject these with probability up to ¹/₂.
- Compare with nondeterministic TM acceptance:
 w ∈ L implies that there is some accepting path, and
 - $w \notin L$ implies that there is no accepting path.

- Lemma: Suppose that M is a PPT-TM that decides L with error probability ϵ , where $0 \le \epsilon < \frac{1}{2}$.
 - Then for any ϵ' , $0 \le \epsilon' < \frac{1}{2}$, there exists M', another PPT-TM, that decides L with error probability ϵ' .
- Proof idea:
 - M' simulates M many times and takes the majority value for the decision.
 - Why does this improve the probability of getting the right answer?
 - E.g., suppose $\varepsilon = 1/3$; then each trial gives the right answer at least 2/3 of the time (with 2/3 probability).
 - If we repeat the experiment many times, then with very high probability, we'll get the right answer a majority of the times.
 - How many times? Depends on ϵ and ϵ' .

- Lemma: Suppose that M is a PPT-TM that decides L with error probability ϵ , where $0 \le \epsilon < \frac{1}{2}$.
 - Then for any ϵ' , $0 \le \epsilon' < \frac{1}{2}$, there exists M', another PPT-TM, that decides L with error probability ϵ' .

• Proof idea:

- M' simulates M many times, takes the majority value.
- E.g., suppose $\varepsilon = 1/3$; then each trial gives the right answer at least 2/3 of the time (with 2/3 probability).
- If we repeat the experiment many times, then with very high probability, we'll get the right answer a majority of the times.
- How many times? Depends on ε and ε' .
- 2k, where (4 ϵ (1- ϵ))^k $\leq \epsilon'$, suffices.
- In other words $k \ge (\log_2 \epsilon') / (\log_2 (4\epsilon (1 \epsilon))).$
- See book for calculations.

Characterization of BPP

- Theorem: L∈BPP if and only for, for some ε, 0 ≤ ε
 < ½, there is a PPT-TM that decides L with error probability ε.
- Proof:
 - ⇒ If L ∈ BPP, then there is some PPT-TM that decides L with error probability $\epsilon = 1/3$, which suffices.
 - ⇐ If for some ε, a PPT-TM decides L with error probability ε, then by the Lemma, there is a PPT-TM that decides L with error probability 1/3; this means that L ∈ BPP.

- For RP, the situation is a little different:
 - If $w \in L$, then Pr[M accepts w] could be equal to $\frac{1}{2}$.
 - So after many trials, the majority would be just as likely to be correct or incorrect.
- But this isn't useless, because when w ∉ L, the machine always answers correctly.
- Lemma: Suppose M is a PPT-TM that decides L, $0 \le \epsilon < 1$, and

 $w \in L$ implies Pr[M accepts w] $\geq 1 - \epsilon$.

 $w \notin L$ implies Pr[M rejects w] = 1.

Then for any ϵ' , $0 \le \epsilon' < 1$, there exists M', another PPT-TM, that decides L with:

 $w \in L$ implies Pr[M accepts w] $\geq 1 - \epsilon'$.

 $w \notin L$ implies Pr[M rejects w] = 1.

- Lemma: Suppose M is a PPT-TM that decides L, $0 \le \varepsilon < 1$,
 - $w \in L$ implies Pr[M accepts w] \geq 1 ϵ .

 $w \notin L$ implies Pr[M rejects w] = 1.

Then for any ϵ' , $0 \le \epsilon' < 1$, there exists M', another PPT-TM, that decides L with:

 $w \in L \text{ implies } Pr[\text{ } M' \text{ accepts } w \text{ }] \geq 1 \text{ - } \epsilon'.$

 $w \notin L$ implies Pr[M' rejects w] = 1.

- Proof idea:
 - M': On input w:
 - Run k independent trials of M on w.
 - If any accept, then accept; else reject.
 - Here, choose k such that $\epsilon^k \leq \epsilon'$.
 - If $w \notin L$ then all trials reject, so M' rejects, as needed.
 - If $w \in L$ then each trial accepts with probability $\geq 1 \varepsilon$, so Prob(at least one of the k trials accepts)
 - = 1 Prob(all k reject) \geq 1 $\epsilon^{k} \geq$ 1 ϵ' .

Characterization of RP

• Lemma: Suppose M is a PPT-TM that decides L, $0 \le \epsilon < 1$,

 $w \in L$ implies Pr[M accepts w] $\geq 1 - \epsilon$.

 $w \notin L$ implies Pr[M rejects w] = 1.

Then for any ϵ' , $0 \le \epsilon' < 1$, there exists M', another PPT-TM, that decides L with:

 $w \in L$ implies Pr[M' accepts w] \geq 1 - ϵ' .

 $w \notin L$ implies Pr[M' rejects w] = 1.

 Theorem: L ∈ RP iff for some ε, 0 ≤ ε < 1, there is a PPT-TM that decides L with:

 $w \in L$ implies Pr[M accepts w] $\geq 1 - \epsilon$.

 $w \notin L$ implies Pr[M rejects w] = 1.

RP vs. BPP

- Lemma: Suppose M is a PPT-TM that decides L, 0 ≤ ε < 1, w ∈ L implies Pr[M accepts w] ≥ 1 - ε. w ∉ L implies Pr[M rejects w] = 1.
 - Then for any ϵ' , $0 \le \epsilon' < 1$, there exists M', another PPT-TM, that decides L with:

 $w \in L \text{ implies } Pr[\text{ } M' \text{ accepts } w \text{ }] \geq 1 \text{ - } \epsilon'.$

 $w \notin L$ implies Pr[M' rejects w] = 1.

- Theorem: $RP \subseteq BPP$.
- Proof:
 - Given A ∈ RP, get (by def. of RP) a PPT-TM M with:
 w ∈ L implies Pr[M accepts w] ≥ ½.
 w ∉ L implies Pr[M rejects w] = 1.
 - By Lemma, get another PPT-TM for A, with:
 w ∈ L implies Pr[M accepts w] ≥ 2/3.
 w ∉ L implies Pr[M rejects w] = 1.
 - Implies $A \in BPP$, by definition of BPP.

RP, co-RP, and BPP

- Definition: $coRP = \{ L \mid L^c \in RP \}$
- coRP contains the languages L that can be decided by a PPT-TM that is always correct for w ∈ L and has error probability at most ½ for w ∉ L.
- That is, L is in coRP if there is a PPT-TM that decides L, where:
 - $w \in L$ implies that Pr[M accepts w] = 1, and
 - $w \notin L$ implies that Pr[M rejects w] ≥ 1/2.
- Theorem: $coRP \subseteq BPP$.
- So we have:

Example 1: Primality Testing

Primality Testing

- PRIMES = { <n> | n is a natural number > 1 and n cannot be factored as q r, where 1 < q, r < n }
- COMPOSITES = { <n> | n > 1 and n can be factored...}
- We will show an algorithm demonstrating that $PRIMES \in coRP$.
- So COMPOSITES \in RP, and both \in BPP.

- This is not exciting, because it is now known that both are in P. [Agrawal, Kayal, Saxema 2002]
- But their poly-time algorithm is hard, whereas the probabilistic algorithm is easy.
- And anyway, this illustrates some nice probabilistic methods.

Primality Testing

- PRIMES = { <n> | n is a natural number > 1 and n cannot be factored as q r, where 1 < q, r < n }
- COMPOSITES = { <n> | n > 1 and n can be factored...}

- Note:
 - Deciding whether n is prime/composite isn't the same as factoring.
 - Factoring seems to be a much harder problem; it's at the heart of modern cryptography.

Primality Testing

- PRIMES = { <n> | n is a natural number > 1 and n cannot be factored as q r, where 1 < q, r < n }
- Show PRIMES \in coRP.
- Design PPT-TM (algorithm) M for PRIMES that satisfies:
 - n ∈ PRIMES \Rightarrow Pr[M accepts n] = 1.
 - n ∉ PRIMES ⇒ Pr[M accepts n] ≤ 2^{-k}.
- Here, k depends on the number of "trials" M makes.
- M always accepts primes, and almost always correctly identifies composites.
- Algorithm rests on some number-theoretic facts about primes (just state them here):

Fermat's Little Theorem

- PRIMES = { <n> | n is a natural number > 1 and n cannot be factored as q r, where 1 < q, r < n }
- Design PPT-TM (algorithm) M for PRIMES that satisfies:
 n ∈ PRIMES ⇒ Pr[M accepts n] = 1.
 - n ∉ PRIMES \Rightarrow Pr[M accepts n] ≤ 2^{-k}.
- Fact 1: Fermat's Little Theorem: If n is prime and $a \in Z_n^+$ then $a^{n-1} \equiv 1 \mod n$.

Integers mod n except for 0, that is, {1,2,...,n-1}

• **Example**: n = 5, $Z_n^+ = \{1, 2, 3, 4\}$.

$$-a = 1$$
: $1^{5-1} = 1^4 = 1 \equiv 1 \mod 5$.

- -a = 2: $2^{5-1} = 2^4 = 16 \equiv 1 \mod 5$.
- -a = 3: $3^{5-1} = 3^4 = 81 \equiv 1 \mod 5$.
- -a = 4: $4^{5-1} = 4^4 = 256 \equiv 1 \mod 5$.

Fermat's test

- Design PPT-TM (algorithm) M for PRIMES that satisfies:
 - n ∈ PRIMES \Rightarrow Pr[M accepts n] = 1.
 - n ∉ PRIMES \Rightarrow Pr[M accepts n] ≤ 2^{-k}.
- Fermat: If n is prime and $a \in Z_n^+$ then $a^{n-1} \equiv 1 \mod n$.
- We can use this fact to identify some composites without factoring them:
- Example: n = 8, a = 3.
 - $-3^{8-1} = 3^7 \equiv 3 \mod 8$, not 1 mod 8.
 - So 8 is composite.
- Algorithm attempt 1:
 - On input n:
 - Choose a number **a** randomly from $Z_n^+ = \{1, ..., n-1\}$.
 - If $a^{n-1} \equiv 1 \mod n$ then accept (passes Fermat test).
 - Else reject (known not to be prime).

Algorithm attempt 1

- Design PPT-TM (algorithm) M for PRIMES that satisfies:
 - n ∈ PRIMES \Rightarrow Pr[M accepts n] = 1.
 - n ∉ PRIMES \Rightarrow Pr[M accepts n] ≤ 2^{-k}.
- Fermat: If n is prime and $a \in Z_n^+$ then $a^{n-1} \equiv 1 \mod n$.
- First try: On input n:
 - Choose number a randomly from $Z_n^+ = \{1, ..., n-1\}$.
 - If $a^{n-1} \equiv 1 \mod n$ then accept (passes Fermat test).
 - Else reject (known not to be prime).
- This guarantees:
 - n ∈ PRIMES \Rightarrow Pr[M accepts n] = 1.
 - n ∉ PRIMES \Rightarrow ??
 - Don't know. It could pass the test, and be accepted erroneously.
- The problem isn't helped by repeating the test many times, for many values of a---because there are some non-prime n's that pass the test for all values of a.

Carmichael numbers

- Fermat: If n is prime and $a \in Z_n^+$ then $a^{n-1} \equiv 1 \mod n$.
- On input n:
 - Choose a randomly from $Z_n^+ = \{1, \dots, n-1\}$.
 - If $a^{n-1} \equiv 1 \mod n$ then accept (passes Fermat test).
 - Else reject (known not to be prime).
- Carmichael numbers: Non-primes that pass all Fermat tests, for all values of a.
- Fact 2: Any non-Carmichael composite number fails at least half of all Fermat tests (for at least half of all values of a).
- So for any non-Carmichael composite, the algorithm correctly identifies it as composite, with probability $\geq \frac{1}{2}$.
- So, we can repeat k times to get more assurance.
- Guarantees:
 - n ∈ PRIMES \Rightarrow Pr[M accepts n] = 1.
 - − n a non-Carmichael composite number \Rightarrow Pr[M accepts n] ≤ 2^{-k}.
 - n a Carmichael composite number \Rightarrow Pr[M accepts n] = 1 (wrong)

Carmichael numbers

- Fermat: If n is prime and $a \in Z_n^+$ then $a^{n-1} \equiv 1 \mod n$.
- On input n:
 - Choose a randomly from $Z_n^+ = \{1, \dots, n-1\}$.
 - If $a^{n-1} \equiv 1 \mod n$ then accept (passes Fermat test).
 - Else reject (known not to be prime).
- Carmichael numbers: Non-primes that pass all Fermat tests.
- Algorithm guarantees:
 - n ∈ PRIMES \Rightarrow Pr[M accepts n] = 1.
 - − n a non-Carmichael composite number \Rightarrow Pr[M accepts n] \leq 2^{-k}.
 - n a Carmichael composite number \Rightarrow Pr[M accepts n] = 1.
- We must do something about the Carmichael numbers.
- Use another test, based on:
- Fact 3: For every Carmichael composite n, there is some b ≠ 1, -1 such that b² = 1 mod n (that is, 1 has a nontrivial square root, mod n). No prime has such a square root.

- Fact 3: For every Carmichael composite n, there is some b ≠ 1, -1 such that b² ≡ 1 mod n. No prime has such a square root.
- Primality-testing algorithm: On input n:
 - If n = 1 or n is even: Give the obvious answer (easy).
 - If n is odd and > 1: Choose a randomly from Z_n^+ .
 - (Fermat test) If aⁿ⁻¹ is not congruent to 1 mod n then reject.
 - (Carmichael test) Write n 1 = 2^h s, where s is odd (factor out twos).
 - Consider successive squares, a^{s} , a^{2s} , a^{4s} , a^{8s} ..., $a^{2^{h}s} = a^{n-1}$.
 - If all terms are \equiv 1 mod n, then accept.
 - If not, then find the last one that isn't congruent to 1.
 - If it's \equiv -1 mod n then accept else reject.

- If n is odd and > 1:
 - Choose a randomly from Z_n^+ .
 - (Fermat test) If a^{n-1} is not congruent to 1 mod n then reject.
 - (Carmichael test) Write $n 1 = 2^{h} s$, where s is odd.
 - Consider successive squares, a^{s} , a^{2s} , a^{4s} , a^{8s} ..., $a^{2^{h}s} = a^{n-1}$.
 - If all terms are \equiv 1 mod n, then accept.
 - If not, then find the last one that isn't congruent to 1.
 - If it's \equiv -1 mod n then accept else reject.
- Theorem: This algorithm satisfies:
 - $n \in PRIMES \Rightarrow Pr[accepts n] = 1.$
 - n ∉ PRIMES \Rightarrow Pr[accepts n] \leq ½.
- By repeating it k times, we get:
 - n ∉ PRIMES ⇒ Pr[accepts n] ≤ $(\frac{1}{2})^k$.

- If n is odd and > 1:
 - Choose a randomly from Z_n^+ .
 - (Fermat test) If a^{n-1} is not congruent to 1 mod n then reject.
 - (Carmichael test) Write $n 1 = 2^{h} s$, where s is odd.
 - Consider successive squares, a^{s} , a^{2s} , a^{4s} , a^{8s} ..., $a^{2^{h}s} = a^{n-1}$.
 - If all terms are \equiv 1 mod n, then accept.
 - If not, then find the last one that isn't congruent to 1.
 - If it's \equiv -1 mod n then accept else reject.
- Theorem: This algorithm satisfies:
 - $n \in PRIMES \Rightarrow Pr[accepts n] = 1.$
 - n ∉ PRIMES \Rightarrow Pr[accepts n] \leq ½.
- **Proof**: Suppose n is odd and > 1.

Proof

- If n is odd and > 1:
 - Choose a randomly from Z_n^+ .
 - (Fermat test) If a^{n-1} is not congruent to 1 mod n then reject.
 - (Carmichael test) Write $n 1 = 2^{h} s$, where s is odd.
 - Consider successive squares, a^{s} , a^{2s} , a^{4s} , a^{8s} ..., $a^{2^{h}s} = a^{n-1}$.
 - If all terms are \equiv 1 mod n, then accept.
 - If not, then find the last one that isn't congruent to 1.
 - If it's \equiv -1 mod n then accept else reject.
- Proof that $n \in PRIMES \Rightarrow Pr[accepts n] = 1$.
 - Show that, if the algorithm rejects, then n must be composite.
 - Reject because of Fermat: Then not prime, by Fact 1 (primes pass).
 - Reject because of Carmichael: Then 1 has a nontrivial square root b, mod n, so n isn't prime, by Fact 3.
 - Let b be the last term in the sequence that isn't congruent to 1 mod n.
 - b^2 is the next one, and is = 1 mod n, so b is a square root of 1, mod n.

Proof

- If n is odd and > 1:
 - Choose a randomly from Z_n^+ .
 - (Fermat test) If a^{n-1} is not congruent to 1 mod n then reject.
 - (Carmichael test) Write $n 1 = 2^{h} s$, where s is odd.
 - Consider successive squares, a^{s} , a^{2s} , a^{4s} , a^{8s} ..., $a^{2^{h}s} = a^{n-1}$.
 - If all terms are \equiv 1 mod n, then accept.
 - If not, then find the last one that isn't congruent to 1.
 - If it's \equiv -1 mod n then accept else reject.
- Proof that $n \notin PRIMES \Rightarrow Pr[accepts n] \le \frac{1}{2}$.
 - Suppose n is a composite.
 - If n is not a Carmichael number, then at least half of the possible choices of a fail the Fermat test (by Fact 2).
 - If n is a Carmichael number, then Fact 3 says that some b fails the Carmichael test (is a nontrivial square root).
 - Actually, when we generate b using a as above, at least half of the possible choices of a generate bs that fail the Carmichael test.
 - Why: Technical argument, in Sipser, p. 374-375.

- So we have proved:
- Theorem: This algorithm satisfies:
 - $n \in PRIMES \Rightarrow Pr[accepts n] = 1.$
 - n ∉ PRIMES ⇒ Pr[accepts n] ≤ $\frac{1}{2}$.
- This implies:
- Theorem: $PRIMES \in coRP$.
- Repeating k times, or using an amplification lemma, we get:
 - $n \in PRIMES \Rightarrow Pr[accepts n] = 1.$
 - n ∉ PRIMES ⇒ Pr[accepts n] ≤ $(\frac{1}{2})^k$.
- Thus, the algorithm might sometimes make mistakes and classify a composite as a prime, but the probability of doing this can be made arbitrarily low.
- Corollary: COMPOSITES \in RP.

- Theorem: $PRIMES \in coRP$.
- Corollary: COMPOSITES \in RP.
- Corollary: Both PRIMES and COMPOSITES ∈ BPP.

Example 2: Branching-Program Equivalence

Branching Programs

- Branching program: A variant of a decision tree. Can be a DAG, not just a tree:
- Describes a Boolean function of a set { x₁, x₂, x₃,...} of Boolean variables.
- Restriction: Each variable appears at most once on each path.

Branching Programs

- Branching program representation for Boolean functions is used by system modeling and analysis tools, for systems in which the state can be represented using just Boolean variables.
- Programs called Binary Decision Diagrams (BDDs).
- Analyzing a model involves exploring all the states, which in turn involves exploring all the paths in the diagram.
- Choosing the "right" order of evaluating the variables can make a big difference in cost (running time).
- Q: Given two branching programs, B₁ and B₂, do they compute the same Boolean function?
- That is, do the same values for all the variables always lead to the same result in both programs?

- Q: Given two branching programs, B₁ and B₂, do they compute the same Boolean function?
- Express as a language problem:
 EQ_{BP} = { < B₁, B₂ > | B₁ and B₂ are BPs that compute the same Boolean function }.
- Theorem: EQ_{BP} is in $coRP \subseteq BPP$.
- Note: Need the restriction that a variable appears at most once on each path. Otherwise, the problem is coNPcomplete.
- Proof idea:
 - Pick random values for $x_1, x_2, ...$ and see if they lead to the same answer in B_1 and B_2 .
 - If so, accept; if not, reject.
 - Repeat several times for extra assurance.

 $EQ_{BP} = \{ < B_1, B_2 > | B_1 \text{ and } B_2 \text{ are BPs that compute the same Boolean function } \}$

- Theorem: EQ_{BP} is in $coRP \subseteq BPP$.
- Proof idea:
 - Pick random values for $x_1, x_2, ...$ and see if they lead to the same answer in B_1 and B_2 .
 - If so, accept; if not, reject.
 - Repeat several times for extra assurance.
- This is not quite good enough:
 - Some inequivalent BPs differ on only one assignment to the vars.
 - Unlikely that the algorithm would guess this assignment.
- Better proof idea:
 - Consider the same BPs but now pretend the domain of values for the variables is Z_p, the integers mod p, for a large prime p, rather than just {0,1}.
 - This will let us make more distinctions, making it less likely that we would think B_1 and B_2 are equivalent if they aren't.

 $EQ_{BP} = \{ < B_1, B_2 > | B_1 \text{ and } B_2 \text{ are BPs that compute the same Boolean function } \}$

- Theorem: EQ_{BP} is in $coRP \subseteq BPP$.
- Proof idea:
 - Pick random values for $x_1, x_2, ...$ and see if they lead to the same answer in B_1 and B_2 .
 - If so, accept; if not, reject.
 - Repeat several times for extra assurance.
- Better proof idea:
 - Pretend that the domain of values for the variables is Z_p , the integers mod p, for a large prime p, rather than just {0,1}.
 - This lets us make more distinctions, making it less likely that we would think B_1 and B_2 are equivalent if they aren't.
 - But how do we apply the programs to integers mod p?
 - By associating a multi-variable polynomial with each program:

Associating a polynomial with a BP

• Associate a polynomial with each node in the BP, and use the poly associated with the 1-result node as the poly for the entire BP.

Labeling rules

- Top node: Label with polynomial 1.
- Non-top node: Label with sum of polys, one for each incoming edge:
 - Edge labeled with 1, from x, labeled with p, contributes p x.
 - Edge labeled with 0, from x, labeled with p, contributes p (1-x).

Labeling rules

- Top node: Label with polynomial 1.
- Non-top node: Label with sum of polys, one for each incoming edge:
 - Edge labeled with 1, from x labeled with p, contributes p x.
 - Edge labeled with 0, from x labeled with p, contributes p (1-x).

Associating a polynomial with a BP

- What do these polynomials mean for Boolean values?
- For any particular assignment of { 0, 1 } to the variables, each polynomial at each node evaluates to either 0 or 1 (because of their special form).
- The polynomials on the path followed by that assignment all evaluate to 1, and all others evaluate to 0.
- The polynomial associated with the entire program evaluates to 1 exactly for the assignments that lead there = those that are assigned value 1 by the program.
- Example: Above. - The assignments leading to result 1 are: - Which are exactly the assignments for which the program's polynomial evaluates to 1. $x_1 x_2 x_3$ 0 0 1 1 0 1 1 1 0 1 1 1

 $+ (1-x_1) (1-x_2) x_3$

- Now consider Z_p, integers mod p, for a large prime p (much bigger than the number of variables).
- Equivalence algorithm: On input < B₁, B₂ >, where both programs use m variables:
 - Choose elements a_1, a_2, \dots, a_m from Z_p at random.
 - Evaluate the polynomials p_1 associated with B_1 and p_2 associated with B_2 for $x_1 = a_1, x_2 = a_2, ..., x_m = a_m$.
 - Evaluate them node-by-node, without actually constructing all the polynomials for both programs.
 - Do this in polynomial time in the size of $< B_1, B_2 >$, LTTR.
 - If the results are equal (mod p) then accept; else reject.
- Theorem: The equivalence algorithm guarantees:
 - If B_1 and B_2 are equivalent BPs (for Boolean values) then Pr[algorithm accepts n] = 1.
 - If B_1 and B_2 are not equivalent, then Pr[algorithm rejects $n] \ge 2/3$.

- Equivalence algorithm: On input $< B_1, B_2 >$:
 - Choose elements a_1, a_2, \dots, a_m from Z_p at random.
 - Evaluate the polynomials p_1 associated with B_1 and p_2 associated with B_2 for $x_1 = a_1, x_2 = a_2, ..., x_m = a_m$.
 - If the results are equal (mod p) then accept; else reject.
- Theorem: The equivalence algorithm guarantees:
 - If B_1 and B_2 are equivalent BPs then Pr[accepts n] = 1.
 - If B_1 and B_2 are not equivalent, then $Pr[rejects n] \ge 2/3$.
- Proof idea: (See Sipser, p. 379)
 - If B_1 and B_2 are equivalent BPs (for Boolean values), then p_1 and p_2 are equivalent polynomials over Z_p , so always accepts.
 - If B_1 and B_2 are not equivalent (for Boolean values), then at least 2/3 of the possible sets of choices from Z_p yield different values, so Pr[rejects n] $\ge 2/3$.
- Corollary: $EQ_{BP} \in coRP \subseteq BPP$.

Relationships Between Complexity Classes

Relationships between complexity classes

- From the definitions, $RP \subseteq NP$ and $coRP \subseteq coNP$.
- So we have:

Relationships between classes

• So we have:

• Q: Where does BPP fit in?

Relationships between classes

- Where does BPP fit?
 - $NP \cup coNP \subseteq BPP$?
 - BPP = P ?
 - Something in between ?
- Many people believe BPP = RP = coRP = P, that is, that randomness doesn't help.

- How could this be?
- Perhaps we can emulate randomness with pseudo-random generators---deterministic algorithms whose output "looks random".
- What does it mean to "look random"?
- A polynomial-time TM can't distinguish them from random.
- Current research!

• Cryptography!

6.045J / 18.400J Automata, Computability, and Complexity Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.