
6.045: Automata, Computability, and
Complexity (GITCS)

Class 17
Nancy Lynch

Today
• Probabilistic Turing Machines and Probabilistic

Time Complexity Classes
• Now add a new capability to standard TMs:

random choice of moves.
• Gives rise to new complexity classes: BPP and

RP
• Topics:

– Probabilistic polynomial-time TMs, BPP and RP
– Amplification lemmas
– Example 1: Primality testing
– Example 2: Branching-program equivalence
– Relationships between classes

• Reading:
– Sipser Section 10.2

Probabilistic Polynomial-Time Turing
Machines, BPP and RP

Probabilistic Polynomial-Time TM
• New kind of NTM, in which each nondeterministic step is a

coin flip: has exactly 2 next moves, to each of which we
assign probability ½.

• Example:

1/4 1/4

1/8 1/8 1/8

1/16 1/16

Computation on input w– To each maximal branch, we assign
a probability:

½ × ½ × … × ½

• Has accept and reject states, as
for NTMs.

• Now we can talk about probability
of acceptance or rejection, on
input w.

number of coin flips
on the branch

Probabilistic Poly-Time TMs

1/4 1/4

1/8 1/8 1/8

1/16 1/16

Computation on input w
• Probability of acceptance =

Σb an accepting branch Pr(b)
• Probability of rejection =

Σb a rejecting branch Pr(b)
• Example:

– Add accept/reject information
– Probability of acceptance = 1/16 + 1/8

+ 1/4 + 1/8 + 1/4 = 13/16
– Probability of rejection = 1/16 + 1/8 =

3/16

• We consider TMs that halt (either
accept or reject) on every branch--
-deciders.

• So the two probabilities total 1.

Acc Acc

Acc Acc Rej

Acc Rej

Probabilistic Poly-Time TMs
• Time complexity:

– Worst case over all branches, as usual.
• Q: What good are probabilistic TMs?
• Random choices can help solve some problems efficiently.
• Good for getting estimates---arbitrarily accurate, based on

the number of choices.

f

• Example: Monte Carlo estimation of areas
– E.g, integral of a function f.
– Repeatedly choose a random point (x,y) in the rectangle.
– Compare y with f(x).
– Fraction of trials in which y ≤ f(x) can be used to estimate the

integral of f.

Probabilistic Poly-Time TMs
• Random choices can help solve some problems efficiently.
• We’ll see 2 languages that have efficient probabilistic

estimation algorithms.
• Q: What does it mean to estimate a language?
• Each w is either in the language or not; what does it mean

to “approximate” a binary decision?

• Possible answer: For “most” inputs w, we always get the
right answer, on all branches of the probabilistic
computation tree.

• Or: For “most” w, we get the right answer with high
probability.

• Better answer: For every input w, we get the right answer
with high probability.

Probabilistic Poly-Time TMs
• Better answer: For every input w, we get the right answer

with high probability.
• Definition: A probabilistic TM decider M decides language

L with error probability ε if
– w ∈ L implies that Pr[M accepts w] ≥ 1 - ε, and
– w ∉ L implies that Pr[M rejects w] ≥ 1 - ε.

• Definition: Language L is in BPP (Bounded-error
Probabilistic Polynomial time) if there is a probabilistic
polynomial-time TM that decides L with error probability 1/3.

• Q: What’s so special about 1/3?
• Nothing. We would get an equivalent definition (same

language class) if we chose ε to be any value with 0 < ε <
½.

• We’ll see this soon---Amplification Theorem

Probabilistic Poly-Time TMs
• Another class, RP, where the error is 1-sided:
• Definition: Language L is in RP (Random

Polynomial time) if there is a a probabilistic
polynomial-time TM that decides L, where:
– w ∈ L implies that Pr[M accepts w] ≥ 1/2, and
– w ∉ L implies that Pr[M rejects w] = 1.

• Thus, absolutely guaranteed to be correct for
words not in L---always rejects them.

• But, might be incorrect for words in L---might
mistakenly reject these, in fact, with probability up
to ½.

• We can improve the ½ to any larger constant < 1,
using another Amplification Theorem.

RP
• Definition: Language L is in RP (Random

Polynomial time) if there is a a probabilistic
polynomial-time TM that decides L, where:
– w ∈ L implies that Pr[M accepts w] ≥ 1/2, and
– w ∉ L implies that Pr[M rejects w] = 1.

• Always correct for words not in L.
• Might be incorrect for words in L---can reject these

with probability up to ½.
• Compare with nondeterministic TM acceptance:

– w ∈ L implies that there is some accepting path, and
– w ∉ L implies that there is no accepting path.

Amplification Lemmas

Amplification Lemmas
• Lemma: Suppose that M is a PPT-TM that decides L with

error probability ε, where 0 ≤ ε < ½.
Then for any ε′, 0 ≤ ε′ < ½, there exists M′, another PPT-
TM, that decides L with error probability ε′.

• Proof idea:
– M′ simulates M many times and takes the majority value

for the decision.
– Why does this improve the probability of getting the right

answer?
– E.g., suppose ε = 1/3; then each trial gives the right

answer at least 2/3 of the time (with 2/3 probability).
– If we repeat the experiment many times, then with very

high probability, we’ll get the right answer a majority of
the times.

– How many times? Depends on ε and ε′.

Amplification Lemmas
• Lemma: Suppose that M is a PPT-TM that decides L with

error probability ε, where 0 ≤ ε < ½.
Then for any ε′, 0 ≤ ε′ < ½, there exists M′, another PPT-
TM, that decides L with error probability ε′.

• Proof idea:
– M′ simulates M many times, takes the majority value.
– E.g., suppose ε = 1/3; then each trial gives the right

answer at least 2/3 of the time (with 2/3 probability).
– If we repeat the experiment many times, then with very

high probability, we’ll get the right answer a majority of
the times.

– How many times? Depends on ε and ε′.
– 2k, where (4ε (1- ε))k ≤ ε′, suffices.
– In other words k ≥ (log2 ε′) / (log2 (4ε (1- ε))).
– See book for calculations.

Characterization of BPP
• Theorem: L∈BPP if and only for, for some ε, 0 ≤ ε

< ½, there is a PPT-TM that decides L with error
probability ε.

• Proof:
⇒ If L ∈ BPP, then there is some PPT-TM that decides L

with error probability ε = 1/3, which suffices.
⇐ If for some ε, a PPT-TM decides L with error probability

ε, then by the Lemma, there is a PPT-TM that decides L
with error probability 1/3; this means that L ∈ BPP.

Amplification Lemmas
• For RP, the situation is a little different:

– If w ∈ L, then Pr[M accepts w] could be equal to ½.
– So after many trials, the majority would be just as likely

to be correct or incorrect.
• But this isn’t useless, because when w ∉ L, the

machine always answers correctly.
• Lemma: Suppose M is a PPT-TM that decides L,

0 ≤ ε < 1, and
w ∈ L implies Pr[M accepts w] ≥ 1 - ε.
w ∉ L implies Pr[M rejects w] = 1.

Then for any ε′, 0 ≤ ε′ < 1, there exists M′, another
PPT-TM, that decides L with:

w ∈ L implies Pr[M accepts w] ≥ 1 - ε′.
w ∉ L implies Pr[M rejects w] = 1.

Amplification Lemmas
• Lemma: Suppose M is a PPT-TM that decides L, 0 ≤ ε < 1,

w ∈ L implies Pr[M accepts w] ≥ 1 - ε.
w ∉ L implies Pr[M rejects w] = 1.

Then for any ε′, 0 ≤ ε′ < 1, there exists M′, another PPT-TM, that
decides L with:
w ∈ L implies Pr[M′ accepts w] ≥ 1 - ε′.
w ∉ L implies Pr[M′ rejects w] = 1.

• Proof idea:
– M′: On input w:

• Run k independent trials of M on w.
• If any accept, then accept; else reject.

– Here, choose k such that εk ≤ ε′.
– If w ∉ L then all trials reject, so M′ rejects, as needed.
– If w ∈ L then each trial accepts with probability ≥ 1 - ε, so

Prob(at least one of the k trials accepts)
= 1 – Prob(all k reject) ≥ 1 - εk ≥ 1 - ε′.

Characterization of RP
• Lemma: Suppose M is a PPT-TM that decides L, 0 ≤ ε < 1,

w ∈ L implies Pr[M accepts w] ≥ 1 - ε.
w ∉ L implies Pr[M rejects w] = 1.

Then for any ε′, 0 ≤ ε′ < 1, there exists M′, another PPT-
TM, that decides L with:

w ∈ L implies Pr[M′ accepts w] ≥ 1 - ε′.
w ∉ L implies Pr[M′ rejects w] = 1.

• Theorem: L ∈ RP iff for some ε, 0 ≤ ε < 1, there is a PPT-
TM that decides L with:

w ∈ L implies Pr[M accepts w] ≥ 1 - ε.
w ∉ L implies Pr[M rejects w] = 1.

RP vs. BPP
• Lemma: Suppose M is a PPT-TM that decides L, 0 ≤ ε < 1,

w ∈ L implies Pr[M accepts w] ≥ 1 - ε.
w ∉ L implies Pr[M rejects w] = 1.

Then for any ε′, 0 ≤ ε′ < 1, there exists M′, another PPT-TM, that
decides L with:
w ∈ L implies Pr[M′ accepts w] ≥ 1 - ε′.
w ∉ L implies Pr[M′ rejects w] = 1.

• Theorem: RP ⊆ BPP.
• Proof:

– Given A ∈ RP, get (by def. of RP) a PPT-TM M with:
w ∈ L implies Pr[M accepts w] ≥ ½.
w ∉ L implies Pr[M rejects w] = 1.

– By Lemma, get another PPT-TM for A, with:
w ∈ L implies Pr[M accepts w] ≥ 2/3.
w ∉ L implies Pr[M rejects w] = 1.

– Implies A ∈ BPP, by definition of BPP.

RP, co-RP, and BPP
• Definition: coRP = { L | Lc ∈ RP }
• coRP contains the languages L that can be

decided by a PPT-TM that is always correct for w
∈ L and has error probability at most ½ for w ∉ L.

• That is, L is in coRP if there is a PPT-TM that
decides L, where:
– w ∈ L implies that Pr[M accepts w] = 1, and
– w ∉ L implies that Pr[M rejects w] ≥ 1/2.

• Theorem: coRP ⊆ BPP.
• So we have:

coRPRP

BPP

Example 1: Primality Testing

Primality Testing
• PRIMES = { <n> | n is a natural number > 1 and n cannot be factored

as q r, where 1 < q, r < n }
• COMPOSITES = { <n> | n > 1 and n can be factored…}
• We will show an algorithm demonstrating that PRIMES ∈ coRP.
• So COMPOSITES ∈ RP, and both ∈ BPP.

• This is not exciting, because it is now known that both are in P.
[Agrawal, Kayal, Saxema 2002]

• But their poly-time algorithm is hard, whereas the probabilistic
algorithm is easy.

• And anyway, this illustrates some nice probabilistic methods.

coRPRP

BPP

COMPOSITES
PRIMES

Primality Testing
• PRIMES = { <n> | n is a natural number > 1 and n cannot

be factored as q r, where 1 < q, r < n }
• COMPOSITES = { <n> | n > 1 and n can be factored…}

• Note:
– Deciding whether n is prime/composite isn’t the same as factoring.
– Factoring seems to be a much harder problem; it’s at the heart of

modern cryptography.

coRPRP

BPP

COMPOSITES
PRIMES

Primality Testing
• PRIMES = { <n> | n is a natural number > 1 and n cannot

be factored as q r, where 1 < q, r < n }
• Show PRIMES ∈ coRP.
• Design PPT-TM (algorithm) M for PRIMES that satisfies:

– n ∈ PRIMES ⇒ Pr[M accepts n] = 1.
– n ∉ PRIMES ⇒ Pr[M accepts n] ≤ 2-k.

• Here, k depends on the number of “trials” M makes.
• M always accepts primes, and almost always correctly

identifies composites.

• Algorithm rests on some number-theoretic facts about
primes (just state them here):

Fermat’s Little Theorem
• PRIMES = { <n> | n is a natural number > 1 and n cannot

be factored as q r, where 1 < q, r < n }
• Design PPT-TM (algorithm) M for PRIMES that satisfies:

– n ∈ PRIMES ⇒ Pr[M accepts n] = 1.
– n ∉ PRIMES ⇒ Pr[M accepts n] ≤ 2-k.

• Fact 1: Fermat’s Little Theorem: If n is prime and a ∈ Zn
+

then an-1 ≡ 1 mod n.

• Example: n = 5, Zn
+ = {1,2,3,4}.

– a = 1: 15-1 = 14 = 1 ≡ 1 mod 5.
– a = 2: 25-1 = 24 = 16 ≡ 1 mod 5.
– a = 3: 35-1 = 34 = 81 ≡ 1 mod 5.
– a = 4: 45-1 = 44 = 256 ≡ 1 mod 5.

Integers mod n except for 0, that is, {1,2,…,n-1}

Fermat’s test
• Design PPT-TM (algorithm) M for PRIMES that satisfies:

– n ∈ PRIMES ⇒ Pr[M accepts n] = 1.
– n ∉ PRIMES ⇒ Pr[M accepts n] ≤ 2-k.

• Fermat: If n is prime and a ∈ Zn
+ then an-1 ≡ 1 mod n.

• We can use this fact to identify some composites without
factoring them:

• Example: n = 8, a = 3.
– 38-1 = 37 ≡ 3 mod 8, not 1 mod 8.
– So 8 is composite.

• Algorithm attempt 1:
– On input n:

• Choose a number a randomly from Zn
+ = { 1,…,n-1 }.

• If an-1 ≡ 1 mod n then accept (passes Fermat test).
• Else reject (known not to be prime).

Algorithm attempt 1
• Design PPT-TM (algorithm) M for PRIMES that satisfies:

– n ∈ PRIMES ⇒ Pr[M accepts n] = 1.
– n ∉ PRIMES ⇒ Pr[M accepts n] ≤ 2-k.

• Fermat: If n is prime and a ∈ Zn
+ then an-1 ≡ 1 mod n.

• First try: On input n:
– Choose number a randomly from Zn

+ = { 1,…,n-1 }.
– If an-1 ≡ 1 mod n then accept (passes Fermat test).
– Else reject (known not to be prime).

• This guarantees:
– n ∈ PRIMES ⇒ Pr[M accepts n] = 1.
– n ∉ PRIMES ⇒ ??
– Don’t know. It could pass the test, and be accepted erroneously.

• The problem isn’t helped by repeating the test many times,
for many values of a---because there are some non-prime
n’s that pass the test for all values of a.

Carmichael numbers
• Fermat: If n is prime and a ∈ Zn

+ then an-1 ≡ 1 mod n.
• On input n:

– Choose a randomly from Zn
+ = { 1,…,n-1 }.

– If an-1 ≡ 1 mod n then accept (passes Fermat test).
– Else reject (known not to be prime).

• Carmichael numbers: Non-primes that pass all Fermat tests,
for all values of a.

• Fact 2: Any non-Carmichael composite number fails at least
half of all Fermat tests (for at least half of all values of a).

• So for any non-Carmichael composite, the algorithm
correctly identifies it as composite, with probability ≥ ½.

• So, we can repeat k times to get more assurance.
• Guarantees:

– n ∈ PRIMES ⇒ Pr[M accepts n] = 1.
– n a non-Carmichael composite number ⇒ Pr[M accepts n] ≤ 2-k.
– n a Carmichael composite number ⇒ Pr[M accepts n] = 1 (wrong)

Carmichael numbers
• Fermat: If n is prime and a ∈ Zn

+ then an-1 ≡ 1 mod n.
• On input n:

– Choose a randomly from Zn
+ = { 1,…,n-1 }.

– If an-1 ≡ 1 mod n then accept (passes Fermat test).
– Else reject (known not to be prime).

• Carmichael numbers: Non-primes that pass all Fermat tests.
• Algorithm guarantees:

– n ∈ PRIMES ⇒ Pr[M accepts n] = 1.
– n a non-Carmichael composite number ⇒ Pr[M accepts n] ≤ 2-k.
– n a Carmichael composite number ⇒ Pr[M accepts n] = 1.

• We must do something about the Carmichael numbers.
• Use another test, based on:
• Fact 3: For every Carmichael composite n, there is some b

≠ 1, -1 such that b2 ≡ 1 mod n (that is, 1 has a nontrivial
square root, mod n). No prime has such a square root.

Primality-testing algorithm
• Fact 3: For every Carmichael composite n, there is some b

≠ 1, -1 such that b2 ≡ 1 mod n. No prime has such a
square root.

• Primality-testing algorithm: On input n:
– If n = 1 or n is even: Give the obvious answer (easy).
– If n is odd and > 1: Choose a randomly from Zn

+.
• (Fermat test) If an-1 is not congruent to 1 mod n then reject.
• (Carmichael test) Write n – 1 = 2h s, where s is odd (factor out

twos).
– Consider successive squares, as, a2s, a4s, a8s ..., a2^h s = an-1.
– If all terms are ≡ 1 mod n, then accept.
– If not, then find the last one that isn’t congruent to 1.
– If it’s ≡ -1 mod n then accept else reject.

Primality-testing algorithm
• If n is odd and > 1:

– Choose a randomly from Zn
+.

– (Fermat test) If an-1 is not congruent to 1 mod n then reject.
– (Carmichael test) Write n – 1 = 2h s, where s is odd.

• Consider successive squares, as, a2s, a4s, a8s ..., a2^h s = an-1.
• If all terms are ≡ 1 mod n, then accept.
• If not, then find the last one that isn’t congruent to 1.
• If it’s ≡ -1 mod n then accept else reject.

• Theorem: This algorithm satisfies:
– n ∈ PRIMES ⇒ Pr[accepts n] = 1.
– n ∉ PRIMES ⇒ Pr[accepts n] ≤ ½.

• By repeating it k times, we get:
– n ∉ PRIMES ⇒ Pr[accepts n] ≤ (½)k.

Primality-testing algorithm
• If n is odd and > 1:

– Choose a randomly from Zn
+.

– (Fermat test) If an-1 is not congruent to 1 mod n then reject.
– (Carmichael test) Write n – 1 = 2h s, where s is odd.

• Consider successive squares, as, a2s, a4s, a8s ..., a2^h s = an-1.
• If all terms are ≡ 1 mod n, then accept.
• If not, then find the last one that isn’t congruent to 1.
• If it’s ≡ -1 mod n then accept else reject.

• Theorem: This algorithm satisfies:
– n ∈ PRIMES ⇒ Pr[accepts n] = 1.
– n ∉ PRIMES ⇒ Pr[accepts n] ≤ ½.

• Proof: Suppose n is odd and > 1.

Proof
• If n is odd and > 1:

– Choose a randomly from Zn
+.

– (Fermat test) If an-1 is not congruent to 1 mod n then reject.
– (Carmichael test) Write n – 1 = 2h s, where s is odd.

• Consider successive squares, as, a2s, a4s, a8s ..., a2^h s = an-1.
• If all terms are ≡ 1 mod n, then accept.
• If not, then find the last one that isn’t congruent to 1.
• If it’s ≡ -1 mod n then accept else reject.

• Proof that n ∈ PRIMES ⇒ Pr[accepts n] = 1.
– Show that, if the algorithm rejects, then n must be composite.
– Reject because of Fermat: Then not prime, by Fact 1 (primes pass).
– Reject because of Carmichael: Then 1 has a nontrivial square root b,

mod n, so n isn’t prime, by Fact 3.
– Let b be the last term in the sequence that isn’t congruent to 1 mod n.
– b2 is the next one, and is ≡ 1 mod n, so b is a square root of 1, mod n.

Proof
• If n is odd and > 1:

– Choose a randomly from Zn
+.

– (Fermat test) If an-1 is not congruent to 1 mod n then reject.
– (Carmichael test) Write n – 1 = 2h s, where s is odd.

• Consider successive squares, as, a2s, a4s, a8s ..., a2^h s = an-1.
• If all terms are ≡ 1 mod n, then accept.
• If not, then find the last one that isn’t congruent to 1.
• If it’s ≡ -1 mod n then accept else reject.

• Proof that n ∉ PRIMES ⇒ Pr[accepts n] ≤ ½.
– Suppose n is a composite.
– If n is not a Carmichael number, then at least half of the possible

choices of a fail the Fermat test (by Fact 2).
– If n is a Carmichael number, then Fact 3 says that some b fails the

Carmichael test (is a nontrivial square root).
– Actually, when we generate b using a as above, at least half of the

possible choices of a generate bs that fail the Carmichael test.
– Why: Technical argument, in Sipser, p. 374-375.

Primality-testing algorithm
• So we have proved:
• Theorem: This algorithm satisfies:

– n ∈ PRIMES ⇒ Pr[accepts n] = 1.
– n ∉ PRIMES ⇒ Pr[accepts n] ≤ ½.

• This implies:
• Theorem: PRIMES ∈ coRP.
• Repeating k times, or using an amplification lemma, we get:

– n ∈ PRIMES ⇒ Pr[accepts n] = 1.
– n ∉ PRIMES ⇒ Pr[accepts n] ≤ (½)k.

• Thus, the algorithm might sometimes make mistakes and
classify a composite as a prime, but the probability of doing
this can be made arbitrarily low.

• Corollary: COMPOSITES ∈ RP.

Primality-testing algorithm
• Theorem: PRIMES ∈ coRP.
• Corollary: COMPOSITES ∈ RP.
• Corollary: Both PRIMES and COMPOSITES ∈

BPP.

coRPRP

BPP

COMPOSITES
PRIMES

Example 2: Branching-Program
Equivalence

Branching Programs
• Branching program: A variant of a decision tree. Can be a

DAG, not just a tree:
• Describes a Boolean function of a set { x1, x2, x3,…} of

Boolean variables.
• Restriction: Each variable appears at most once on each

path.
• Example: x1 x2 x3 result

0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

x1

x3

x2

10

x3

x2

1
1

1 1

1

0
0

00

0

Branching Programs
• Branching program representation for Boolean functions is

used by system modeling and analysis tools, for systems in
which the state can be represented using just Boolean
variables.

• Programs called Binary Decision Diagrams (BDDs).
• Analyzing a model involves exploring all the states, which

in turn involves exploring all the paths in the diagram.
• Choosing the “right” order of evaluating the variables can

make a big difference in cost (running time).

• Q: Given two branching programs, B1 and B2, do they
compute the same Boolean function?

• That is, do the same values for all the variables always
lead to the same result in both programs?

Branching-Program Equivalence
• Q: Given two branching programs, B1 and B2, do they

compute the same Boolean function?
• Express as a language problem:

EQBP = { < B1, B2 > | B1 and B2 are BPs that compute the
same Boolean function }.

• Theorem: EQBP is in coRP ⊆ BPP.
• Note: Need the restriction that a variable appears at most

once on each path. Otherwise, the problem is coNP-
complete.

• Proof idea:
– Pick random values for x1, x2, … and see if they lead to the same

answer in B1 and B2.
– If so, accept; if not, reject.
– Repeat several times for extra assurance.

Branching-Program Equivalence
EQBP = { < B1, B2 > | B1 and B2 are BPs that compute the

same Boolean function }
• Theorem: EQBP is in coRP ⊆ BPP.
• Proof idea:

– Pick random values for x1, x2, … and see if they lead to the same
answer in B1 and B2.

– If so, accept; if not, reject.
– Repeat several times for extra assurance.

• This is not quite good enough:
– Some inequivalent BPs differ on only one assignment to the vars.
– Unlikely that the algorithm would guess this assignment.

• Better proof idea:
– Consider the same BPs but now pretend the domain of values for

the variables is Zp, the integers mod p, for a large prime p, rather
than just {0,1}.

– This will let us make more distinctions, making it less likely that we
would think B1 and B2 are equivalent if they aren’t.

Branching-Program Equivalence
EQBP = { < B1, B2 > | B1 and B2 are BPs that compute the

same Boolean function }
• Theorem: EQBP is in coRP ⊆ BPP.
• Proof idea:

– Pick random values for x1, x2, … and see if they lead to the same
answer in B1 and B2.

– If so, accept; if not, reject.
– Repeat several times for extra assurance.

• Better proof idea:
– Pretend that the domain of values for the variables is Zp, the

integers mod p, for a large prime p, rather than just {0,1}.
– This lets us make more distinctions, making it less likely that we

would think B1 and B2 are equivalent if they aren’t.
– But how do we apply the programs to integers mod p?
– By associating a multi-variable polynomial with each program:

Associating a polynomial with a BP
• Associate a polynomial with each node in the BP,

and use the poly associated with the 1-result node
as the poly for the entire BP.

x1

x3

x2

10

x3

x2

1
1

1 1

1

0
0

00

0
1

x1

x1 (1-x3)

x1 (1-x3) x2
+ x1 x3

+ (1-x1) (1-x2) x3

1 - x1

(1-x1) (1-x2)

(1-x1) (1-x2) (1-x3)
+ (1- x1) x2

+ x1 (1-x3) (1- x2)

The polynomial associated with the program

Labeling rules
• Top node: Label with polynomial 1.
• Non-top node: Label with sum of polys, one for each incoming edge:

– Edge labeled with 1, from x, labeled with p, contributes p x.
– Edge labeled with 0, from x, labeled with p, contributes p (1-x).

x1

x3

x2

10

x3

x2

1
1

1 1

1

0
0

00

0
1

x1

x1 (1-x3)

x1 (1-x3) x2
+ x1 x3

+ (1-x1) (1-x2) x3

1 - x1

(1-x1) (1-x2)

(1-x1) (1-x2) (1-x3)
+ (1- x1) x2

+ x1 (1-x3) (1- x2)

The polynomial associated with the program

Labeling rules
• Top node: Label with polynomial 1.
• Non-top node: Label with sum of polys, one for

each incoming edge:
– Edge labeled with 1, from x labeled with p, contributes

p x.
– Edge labeled with 0, from x labeled with p, contributes

p (1-x).

x

1

p

p x

x

0

p

p (1-x)

Associating a polynomial with a BP
• What do these polynomials mean for Boolean values?
• For any particular assignment of { 0, 1 } to the variables,

each polynomial at each node evaluates to either 0 or 1
(because of their special form).

• The polynomials on the path followed by that assignment
all evaluate to 1, and all others evaluate to 0.

• The polynomial associated with the entire program
evaluates to 1 exactly for the assignments that lead there =
those that are assigned value 1 by the program.

• Example: Above.
– The assignments leading to result 1 are:
– Which are exactly the assignments for which

the program’s polynomial evaluates to 1.

x1 x2 x3
0 0 1
1 0 1
1 1 0
1 1 1 x1 (1-x3) x2

+ x1 x3
+ (1-x1) (1-x2) x3

Branching-Program Equivalence
• Now consider Zp, integers mod p, for a large prime p (much

bigger than the number of variables).

• Equivalence algorithm: On input < B1, B2 >, where both
programs use m variables:
– Choose elements a1, a2,…,am from Zp at random.
– Evaluate the polynomials p1 associated with B1 and p2 associated

with B2 for x1 = a1, x2 = a2,…,xm = am.
• Evaluate them node-by-node, without actually constructing all

the polynomials for both programs.
• Do this in polynomial time in the size of < B1, B2 >, LTTR.

– If the results are equal (mod p) then accept; else reject.

• Theorem: The equivalence algorithm guarantees:
– If B1 and B2 are equivalent BPs (for Boolean values) then

Pr[algorithm accepts n] = 1.
– If B1 and B2 are not equivalent, then Pr[algorithm rejects n] ≥ 2/3.

Branching-Program Equivalence
• Equivalence algorithm: On input < B1, B2 >:

– Choose elements a1, a2,…,am from Zp at random.
– Evaluate the polynomials p1 associated with B1 and p2 associated

with B2 for x1 = a1, x2 = a2,…,xm = am.
– If the results are equal (mod p) then accept; else reject.

• Theorem: The equivalence algorithm guarantees:
– If B1 and B2 are equivalent BPs then Pr[accepts n] = 1.
– If B1 and B2 are not equivalent, then Pr[rejects n] ≥ 2/3.

• Proof idea: (See Sipser, p. 379)
– If B1 and B2 are equivalent BPs (for Boolean values), then p1 and p2

are equivalent polynomials over Zp, so always accepts.
– If B1 and B2 are not equivalent (for Boolean values), then at least

2/3 of the possible sets of choices from Zp yield different values, so
Pr[rejects n] ≥ 2/3.

• Corollary: EQBP ∈ coRP ⊆ BPP.

Relationships Between Complexity
Classes

Relationships between
complexity classes

• We know:

• Also recall:

• From the definitions, RP ⊆ NP and coRP ⊆ coNP.
• So we have:

coRPRP

P

BPP

NP

P

coNP

Relationships between classes

• So we have:

• Q: Where does BPP fit in?

RP

P

coRP

NP coNP

Relationships between classes
• Where does BPP fit?

– NP ∪ coNP ⊆ BPP ?
– BPP = P ?
– Something in between ?

• Many people believe
BPP = RP = coRP = P,
that is, that randomness
doesn’t help.

• How could this be?

RP

P

coRP

NP coNP

• Perhaps we can emulate randomness with pseudo-random
generators---deterministic algorithms whose output “looks
random”.

• What does it mean to “look random”?
• A polynomial-time TM can’t distinguish them from random.
• Current research!

Next time…

• Cryptography!

MIT OpenCourseWare
http://ocw.mit.edu

6.045J / 18.400J Automata, Computability, and Complexity
Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

	6.045: Automata, Computability, and Complexity (GITCS)
	Today
	Probabilistic Polynomial-Time Turing Machines, BPP and RP
	Probabilistic Polynomial-Time TM
	Probabilistic Poly-Time TMs
	Probabilistic Poly-Time TMs
	Probabilistic Poly-Time TMs
	Probabilistic Poly-Time TMs
	Probabilistic Poly-Time TMs
	RP
	Amplification Lemmas
	Amplification Lemmas
	Amplification Lemmas
	Characterization of BPP
	Amplification Lemmas
	Amplification Lemmas
	Characterization of RP
	RP vs. BPP
	RP, co-RP, and BPP
	Example 1: Primality Testing
	Primality Testing
	Primality Testing
	Primality Testing
	Fermat’s Little Theorem
	Fermat’s test
	Algorithm attempt 1
	Carmichael numbers
	Carmichael numbers
	Primality-testing algorithm
	Primality-testing algorithm
	Primality-testing algorithm
	Proof
	Proof
	Primality-testing algorithm
	Primality-testing algorithm
	Example 2: Branching-Program Equivalence
	Branching Programs
	Branching Programs
	Branching-Program Equivalence
	Branching-Program Equivalence
	Branching-Program Equivalence
	Associating a polynomial with a BP
	Labeling rules
	Labeling rules
	Associating a polynomial with a BP
	Branching-Program Equivalence
	Branching-Program Equivalence
	Relationships Between Complexity Classes
	Relationships between complexity classes
	Relationships between classes
	Relationships between classes
	Next time…

