6.045: Automata, Computability, and Complexity (GITCS)

Class 16
Nancy Lynch

Today: More NP-Completeness

- Topics:
- 3SAT is NP-complete
- Clique and VertexCover are NP-complete
- More examples, overview
- Hamiltonian path and Hamiltonian circuit
- Traveling Salesman problem
- More examples, revisited
- Reading:
- Sipser Sections 7.4-7.5
- Garey and Johnson
- Next:
- Sipser Section 10.2

3SAT is NP-Complete

NP-Completeness

- Definition: Language B is NP-complete if both of the following hold:
(a) $B \in N P$, and
(b) For any language $A \in N P, A \leq_{p} B$.

- Definition: Language B is NP-hard if, for any language $A \in N P, A \leq_{p} B$.

3SAT is NP-Complete

- SAT $=\{\langle\phi\rangle \mid \phi$ is a satisfiable Boolean formula $\}$
- Boolean formula: Constructed from literals using operations, e.g.:

$$
\phi=x \wedge((y \wedge z) \vee(\neg y \wedge \neg z)) \wedge \neg(x \wedge z)
$$

- A Boolean formula is satisfiable iff there is an assignment of 0 s and 1 s to the variables that makes the entire formula evaluate to 1 (true).
- Theorem: SAT is NP-complete.
- 3SAT: Satisfiable Boolean formulas of a restricted kind--conjunctive normal form (CNF) with exactly 3 literals per clause.
- Theorem: 3SAT is NP-complete.
- Proof:
- 3SAT \in NP: Obvious.
- 3SAT is NP-hard: ...

3SAT is NP-hard

- Clause: Disjunction of literals, e.g., $\left(\neg x_{1} \vee x_{2} \vee \neg x_{3}\right)$
- CNF: Conjunction of such clauses
- Example:

$$
\left(\neg x_{1} \vee x_{2}\right) \wedge\left(x_{1} \vee \neg x_{2}\right) \wedge\left(x_{1} \vee x_{2} \vee \neg x_{3}\right) \wedge\left(x_{3}\right)
$$

- 3-CNF:
$\{\langle\phi\rangle \mid \phi$ is a CNF formula in which each clause has exactly 3 literals \}
- CNF-SAT: $\{<\phi>\mid \phi$ is a satisfiable CNF formula $\}$
- 3-SAT: $\{\langle\phi\rangle \mid \phi$ is a satisfiable 3-CNF formula $\}$ $=$ SAT $\cap 3-C N F$
- Theorem: 3SAT is NP-hard.
- Proof: Show CNF-SAT is NP-hard, and CNF-SAT \leq_{p} 3SAT.

CNF-SAT is NP-hard

- Theorem: CNF-SAT is NP-hard.
- Proof:
- We won't show SAT \leq_{p} CNF-SAT.
- Instead, modify the proof that SAT is NP-hard, so that it shows A \leq_{p} CNF-SAT, for an arbitrary A in NP, instead of just $\mathrm{A} \leq_{\mathrm{p}}$ SAT as before.
- We've almost done this: formula ϕ_{w} is almost in CNF.
- It's a conjunction $\phi_{\mathrm{w}}=\phi_{\text {cell }} \wedge \phi_{\text {start }} \wedge \phi_{\text {accept }} \wedge \phi_{\text {move }}$.
- And each of these is itself in CNF, except $\phi_{\text {move }}$.
- $\phi_{\text {move }}$ is:
- a conjunction over all (i,j)
- of disjunctions over all tiles
- of conjunctions of 6 conditions on the 6 cells:

$$
x_{i, j, a 1} \wedge x_{i, j+1, a 2} \wedge x_{i, j+2, a 3} \wedge x_{i+1, j, b 1} \wedge x_{i+1, j+1, b 2} \wedge x_{i+1, j+2, b 3}
$$

CNF-SAT is NP-hard

- Show $A \leq_{p}$ CNF-SAT.
- ϕ_{w} is a conjunction $\phi_{w}=\phi_{\text {cell }} \wedge \phi_{\text {start }} \wedge \phi_{\text {accept }} \wedge \phi_{\text {move }}$, where each is in CNF, except $\phi_{\text {move }}$.
- $\phi_{\text {move }}$ is:
- a conjunction (\wedge) over all (i,j)
- of disjunctions (\vee) over all tiles
- of conjunctions (\wedge) of 6 conditions on the 6 cells:

$$
x_{i, j, a 1} \wedge x_{i, j+1, a 2} \wedge x_{i, j+2, a 3} \wedge x_{i+1, j, b 1} \wedge x_{i+1, j+1, b 2} \wedge x_{i+1, j,+2, b 3}
$$

- We want just \wedge of \vee.
- Can use distributive laws to replace (\vee of \wedge) with (\wedge of \vee), which would yield overall \wedge of \vee, as needed.
- In general, transforming (\vee of \wedge) to (\wedge of \vee), could cause formula size to grow too much (exponentially).
- However, in this situation, the clauses for each (i,j) have total size that depends only on the TM M, and not on w.
- So the size of the transformed formula is still poly in $|\mathrm{w}|$.

CNF-SAT is NP-hard

- Theorem: CNF-SAT is NP-hard.
- Proof:
- Modify the proof that SAT is NP-hard.
$-\phi_{\mathrm{w}}=\phi_{\text {cell }} \wedge \phi_{\text {start }} \wedge \phi_{\text {accept }} \wedge \phi_{\text {move }}$.
- Can be put into CNF, while keeping the size of the transformed formula poly in $|\mathrm{w}|$.
- Shows that $A \leq_{p}$ CNF-SAT.
- Since A is any language in NP, CNF-SAT is NPhard.

3SAT is NP-hard

- Proved: Theorem: CNF-SAT is NP-hard.
- Now: Theorem: 3SAT is NP-hard.
- Proof:
- Use reduction, show CNF-SAT \leq_{p} 3SAT.
- Construct f, polynomial-time computable, such that $w \in$ CNF-SAT if and only if $f(w) \in$ 3SAT.
- If w isn't a CNF formula, then $f(w)$ isn't either.
- If w is a CNF formula, then $f(w)$ is another CNF formula, this one with 3 literals per clause, satisfiable iff w is satisfiable.
- f works by converting each clause to a conjunction of clauses, each with ≤ 3 literals (add repeats to get 3).
- Show by example: ($a \vee b \vee c \vee d \vee e$) gets converted to $\left(a \vee r_{1}\right) \wedge\left(\neg r_{1} \vee b \vee r_{2}\right) \wedge\left(\neg r_{2} \vee c \vee r_{3}\right) \wedge\left(\neg r_{3} \vee d \vee r_{4}\right)$ $\wedge\left(\neg r_{4} \vee e\right)$
- f is polynomial-time computable.

3SAT is NP-hard

- Proof:
- Show CNF-SAT $\leq_{p} 3 S A T$.
- Construct f such that $w \in$ CNF-SAT iff $f(w) \in$ 3SAT; converts each clause to a conjunction of clauses.
- f converts $w=(a \vee b \vee c \vee d \vee e)$ to $f(w)=$
$\left(a \vee r_{1}\right) \wedge\left(\neg r_{1} \vee b \vee r_{2}\right) \wedge\left(\neg r_{2} \vee c \vee r_{3}\right) \wedge\left(\neg r_{3} \vee d \vee r_{4}\right) \wedge\left(\neg r_{4} \vee e\right)$
- Claim w is satisfiable iff $f(w)$ is satisfiable.
- \Rightarrow :
- Given a satisfying assignment for w, add values for r_{1}, r_{2}, \ldots, to satisfy f(w).
- Start from a clause containing a literal with value 1---there must be one---make the new literals in that clause 0 and propagate consequences left and right.
- Example: Above, if $c=1, a=b=d=e=0$ satisfy w , use:

$$
\left.\begin{array}{c}
\left(a \vee r_{1}\right) \wedge\left(\neg r_{1} \vee b \vee r_{2}\right) \wedge\left(\neg r_{2} \vee c \vee r_{3}\right) \wedge\left(\neg r_{3} \vee d \vee r_{4}\right) \wedge\left(\neg r_{4} \vee e\right) \\
0
\end{array} 10 \begin{array}{cccccccccc}
0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1
\end{array}\right)
$$

3SAT is NP-hard

- Proof:
- Show CNF-SAT $\leq_{\mathrm{p}} 3$ SAT.
- Construct f such that $\mathrm{w} \in$ CNF-SAT iff $f(w) \in 3$ SAT; converts each clause to a conjunction of clauses.
$-f$ converts $w=(a \vee b \vee c \vee d \vee e)$ to $f(w)=$
$\left(a \vee r_{1}\right) \wedge\left(\neg r_{1} \vee b \vee r_{2}\right) \wedge\left(\neg r_{2} \vee c \vee r_{3}\right) \wedge\left(\neg r_{3} \vee d \vee r_{4}\right) \wedge$ $\left(\neg r_{4} \vee e\right)$
- Claim w is satisfiable iff $f(w)$ is satisfiable.
- $\Leftarrow:$
- Given satisfying assignment for $f(\mathrm{w})$, restrict to satisfy w.
- Each r_{i} can make only one clause true.
- There's one fewer r_{i} than clauses; so some clause must be made true by an original literal, i.e., some original literal must be true, satisfying w.

3SAT is NP-hard

- Theorem: CNF-SAT is NP-hard.
- Theorem: 3SAT is NP-hard.
- Proof:
- Constructed polynomial-time-computable f such that $w \in$ CNF-SAT iff $f(w) \in$ 3SAT.
- Thus, CNF-SAT $\leq_{p} 3 S A T$.
- Since CNF-SAT is NP-hard, so is 3SAT.

CLIQUE and VERTEX-COVER are NP-Complete

CLIQUE and VERTEX-COVER

- CLIQUE $=\{<\mathrm{G}, \mathrm{k}>\mid \mathrm{G}$ is a graph with a k-clique $\}$
- k-clique: k vertices with edges between all pairs in the clique.
- Theorem: CLIQUE is NP-complete.
- Proof:
- CLIQUE \in NP, already shown.
- To show CLIQUE is NP-hard, show 3 SAT \leq_{p} CLIQUE.
- Need poly-time-computable f, such that $w \in$ 3SAT iff $f(w)$ \in CLIQUE.
- f must map a formula w in $3-C N F$ to $<G, k>$ such that w is satisfiable iff G has a k-clique.
- Show by example:

$$
\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee \neg x_{3}\right)
$$

CLIQUE is NP-hard

- Proof:
- Show 3 SAT \leq_{p} CLIQUE; construct f such that $w \in$ 3SAT iff $f(w) \in$ CLIQUE.
- f maps a formula w in $3-C N F$ to $<G, k>$ such that w is satisfiable iff G has a k-clique.
$-\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee \neg x_{3}\right)$
- Graph G: Nodes for all (clause, literal) pairs, edges between all non-contradictory nodes in different clauses.
- k: Number of clauses

CLIQUE is NP-hard

- Graph G: Nodes for all (clause, literal) pairs, edges between all non-contradictory nodes in different clauses.
- k : Number of clauses

$$
\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee \neg x_{3}\right)
$$

- Claim (general): w satisfiable iff G has a k-clique.
- \Rightarrow :
- Assume the formula is satisfiable.
- Satisfying assignment gives one literal in each clause, all with non-contradictory assignments.
- Yields a k-clique.

CLIQUE is NP-hard

- Example:

$$
\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee \neg x_{3}\right)
$$

- Satisfiable, with satisfying assignment $x_{1}=1, x_{2}=x_{3}=0$
- Yields 3-clique:
- \Rightarrow :
- Assume the formula is satisfiable.
- Satisfying assignment gives one literal in each clause, all with non-contradictory assignments.
- Yields a k-clique.

CLIQUE is NP-hard

- Graph G: Nodes for all (clause, literal) pairs, edges between all non-contradictory nodes in different clauses.
- k : Number of clauses

$$
\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee \neg x_{3}\right)
$$

- Claim (general): w satisfiable iff G has a k-clique.
- \Leftarrow
- Assume a k-clique.

CLIQUE is NP-hard

- Graph G: Nodes for all (clause, literal) pairs, edges between all non-contradictory nodes in different clauses.
- k: Number of clauses
- Claim (general): w satisfiable iff G has a k-clique.
- So, 3 SAT \leq_{p} CLIQUE.
- Since 3SAT is NP-hard, so is CLIQUE.
- So CLIQUE is NP-complete.

VERTEX-COVER is NP-complete

- VERTEX-COVER =
$\{<G, k>\mid G$ is a graph with a vertex cover of size k \}
- Vertex cover of $G=(V, E)$: A subset C of V such that, for every edge (u, v) in E, either u or $v \in C$.
- Theorem: VERTEX-COVER is NP-complete.
- Proof:
- VERTEX-COVER \in NP, already shown.
- Show VERTEX-COVER is NP-hard.
- That is, if $A \in N P$, then $A \leq_{p}$ VERTEX-COVER.
- We know $A \leq_{p}$ CLIQUE, since CLIQUE is NP-hard.
- Recall CLIQUE \leq_{p} VERTEX-COVER.
- By transitivity of $\leq_{p}, A \leq_{p}$ VERTEX-COVER, as needed.

VERTEX-COVER is NP-complete

- Theorem: VERTEX-COVER is NP-complete.
- More succinct proof:
- VC \in NP; show VC is NP-hard.
- CLIQUE is NP-hard.
- CLIQUE $\leq_{p} \mathrm{VC}$.
- So VC is NP-hard.
- In general, can show language B is NP-complete by:
- Showing $B \in N P$, and
- Showing $\mathrm{A} \leq_{p} \mathrm{~B}$ for some known NP-hard problem A.

More Examples

More NP-Complete Problems

- [Garey, Johnson] show hundreds of problems are NP-complete.
- All but 3SAT use the polynomial-time reduction method.

More NP-Complete Problems

- $A \rightarrow B$ means $A \leq p$.
- Hardness propagates to the right in \leq_{p}, downward along tree branches.

3SAT \leq_{p} HAMILTONIAN PATH/CIRCUIT

$3 S A T \leq_{p}$ HAMILTONIAN PATH/CIRCUIT

- Two versions of the problem, for directed and undirected graphs.
- Consider directed version; undirected shown by reduction from directed version.
- DHAMPATH $=\{\langle G, s, t\rangle \mid G$ is a directed graph, s and t are two distinct vertices, and there is a path from s to t in G that passes through each vertex of G exactly once \}
- DHAMPATH \in NP: Guess path and verify.
- $3 S A T \leq_{p}$ DHAMPATH:

$3 S A T \leq_{p}$ HAMILTONIAN PATH/CIRCUIT

- DHAMPATH $=\{<\mathrm{G}, \mathrm{s}, \mathrm{t}\rangle \mid \mathrm{G}$ is a directed graph, s and t are two distinct vertices, and there is a path from s to t in G that passes through each vertex of G exactly once \}
- 3 SAT \leq_{p} DHAMPATH:
- Map a 3CNF formula ϕ to <G, s, t> so that ϕ is satisfiable if and only if G has a Hamiltonian path from s to t.
- In fact, there will be a direct correspondence between a satisfying assignment for ϕ and a Hamiltonian path in G.

$3 S A T \leq_{p}$ DHAMPATH

- Map a 3CNF formula ϕ to <G, s, $\mathrm{t}>$ so that ϕ is satisfiable if and only if G has a Hamiltonian path from s to t.
- Correspondence between satisfying assignment for ϕ and Hamiltonian path in G.
- Notation:
- Write $\phi=\left(a_{1} \vee b_{1} \vee c_{1}\right) \wedge\left(a_{2} \vee b_{2} \vee c_{2}\right) \wedge \ldots \wedge\left(a_{k} \vee b_{k} \vee c_{k}\right)$
- k clauses $\mathrm{C}_{1}, \mathrm{C}_{2}, \ldots, \mathrm{C}_{\mathrm{k}}$
- Variables: $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{1}$
- Each $\mathrm{a}_{\mathrm{j}}, \mathrm{b}_{\mathrm{j}}$, and c_{j} is either some x_{i} or some $\neg \mathrm{x}_{\mathrm{i}}$.
- Digraph is constructed from pieces (gadgets), one for each variable x_{i} and one for each clause C_{j}.
- Gadget for variable x_{i} :

Row contains $3 \mathrm{k}+1$ nodes, not counting endpoints.

$3 S A T \leq_{p}$ DHAMPATH

- Notation:
$-\phi=\left(a_{1} \vee b_{1} \vee c_{1}\right) \wedge\left(a_{2} \vee b_{2} \vee c_{2}\right) \wedge \ldots \wedge\left(a_{k} \vee b_{k} \vee c_{k}\right)$
- k clauses $\mathrm{C}_{1}, \mathrm{C}_{2}, \ldots, \mathrm{C}_{\mathrm{k}}$
- Variables: $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{1}$
- Each $\mathrm{a}_{\mathrm{j}}, \mathrm{b}_{\mathrm{j}}$, and c_{j} is either some x_{i} or some $\neg \mathrm{x}_{\mathrm{i}}$.
- Gadget for variable x_{i} :

- Can get from top node to bottom node in two ways:

- Both ways visit all intermediate nodes.

3SAT \leq_{p} DHAMPATH

- Notation:
$-\phi=\left(a_{1} \vee b_{1} \vee c_{1}\right) \wedge\left(a_{2} \vee b_{2} \vee c_{2}\right) \wedge \ldots \wedge\left(a_{k} \vee b_{k} \vee c_{k}\right)$
- k clauses $C_{1}, C_{2}, \ldots, C_{k}$
- Variables: $x_{1}, x_{2}, \ldots, x_{1}$
- Each $\mathrm{a}_{\mathrm{j}}, \mathrm{b}_{\mathrm{j}}$, and c_{j} is either some x_{i} or some $\neg \mathrm{x}_{\mathrm{i}}$.
- Gadget for variable x_{i} :
- Gadget for clause C_{j} :
- Just a single node.
- Putting the pieces together:

- Put variables' gadgets in order $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{1}$, top to bottom, identifying bottom node of each gadget with top node of the next.
- Make s and the overall top and bottom node, respectively

$3 S A T \leq_{p}$ DHAMPATH

- Putting the pieces together:
- Put variables' gadgets in order $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{1}$, identifying bottom node of each with top node of the next.
- Make s and the overall top and bottom node.
- We still must connect x-gadgets with Cgadgets.

$3 S A T \leq_{p}$ DHAMPATH

- We still must connect x-gadgets with C-gadgets.
- Divide the $3 \mathrm{k}+1$ nodes in the cross-bar of x_{i} 's gadget into k pairs, one per clause, separated by $\mathrm{k}+1$ separator nodes:

- If X_{i} appears in C_{j}, add edges between the C_{j} node and the nodes for C_{j} in the crossbar, going from left to right.
- Allows detour to C_{j} while traversing crossbar left-to-right.

$3 S A T \leq_{p}$ DHAMPATH

- If x_{i} appears in C_{j}, add edges L to R.
- Allows detour to C_{j} while traversing crossbar L to R.

- If $\neg x_{i}$ appears in C_{j}, add edges R to L .
- Allows detour to C_{j} while traversing crossbar R to L.
- If both x_{i} and $\neg x_{i}$ appear, add both sets of edges.
- This completes the construction of $\mathrm{G}, \mathrm{s}, \mathrm{t}$.

Example

- $\phi=\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee \neg x_{3}\right)$

Example

- $\phi=\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge \ldots \wedge\left(\neg x_{1} \vee x_{2} \vee \neg x_{3}\right)$

Example

- $\phi=\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge \ldots \wedge\left(\neg x_{1} \vee x_{2} \vee \neg x_{3}\right)$

The entire graph G

- $\phi=\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge \ldots \wedge\left(\neg x_{1} \vee x_{2} \vee \neg x_{3}\right)$

$3 S A T \leq_{p}$ DHAMPATH

- Claim: ϕ is satisfiable iff the graph G has a Hamiltonian path from s to t .
- Proof: \Rightarrow
- Assume ϕ is satisfiable; fix a particular satisfying assignment.
- Follow path top-to-bottom, going
- L to R through gadgets for $x_{i} s$ that are set true.
- R to L through gadgets for $x_{i} s$ that are set false.
- This visits all nodes of G except the C_{j} nodes.
- For these, we must take detours.
- For any particular clause C_{j} :
- At least one of its literals must be set true; pick one.
- If it's of the form x_{i}, then do:

C_{j} pair in x_{i} row
- Works since $x_{i}=$ true means we traverse this crossbar L to R.

$3 S A T \leq_{p}$ DHAMPATH

- Claim: ϕ is satisfiable iff the graph G has a Hamiltonian path from s to t .
- Proof: \Rightarrow
- Assume ϕ is satisfiable; fix a particular satisfying assignment.
- Follow path top-to-bottom, going
- L to R through gadgets for $x_{i} s$ that are set true.
- R to L through gadgets for $x_{i} s$ that are set false.
- This visits all nodes of G except the C_{j} nodes.
- For these, we must take detours.
- For any particular clause C_{j} :
- At least one of its literals must be set true; pick one.
- If it's of the form $\neg x_{i}$, then do:

C_{j} pair in x_{i} row
- Works since $x_{i}=$ false means we traverse this crossbar R to L .

$3 S A T \leq_{p}$ DHAMPATH

- Claim: ϕ is satisfiable iff the graph G has a Hamiltonian path from s to t.
- Proof: \Leftarrow
- Assume G has a Hamiltonian path from s to t, get a satisfying assignment for ϕ.
- If the path is "normal" (goes in order through the gadgets, top to bottom, going one way or the other through each crossbar, and detouring to pick up the C_{j} nodes), then define the assignment by: Set each x_{i} true if path goes L to R through x_{i} 's gadget, false if it goes R to L .
- Why is this a satisfying assignment for ϕ ?
- Consider any clause C_{j}.
- The path goes through its node in one of two ways:

C_{j} pair in x_{i} row

C_{j} pair in x_{i} row

$3 S A T \leq_{p}$ DHAMPATH

- Claim: ϕ is satisfiable iff the graph G has a Hamiltonian path from s to t.
- Proof: \Leftarrow
- Assume G has a Hamiltonian path from s to t, get a satisfying assignment for ϕ.
- If the path is "normal", then define the assignment by: Set each x_{i} true if path goes L to R through x_{i} 's gadget, false if it goes R to L .
- To see that this satisfies ϕ, consider any clause C_{j}.
- The path goes through C_{j} 's node by:
- If the first, then:
- x_{i} is true, since path goes L-R.
- By the way the detour edges are

C_{j} pair in x_{i} row

C_{j} pair in x_{i} row set, C_{j} contains literal x_{i}.
- So C_{j} is satisfied by x_{i}.

$3 S A T \leq_{p}$ DHAMPATH

- Claim: ϕ is satisfiable iff the graph G has a Hamiltonian path from s to t.
- Proof: \Leftarrow
- Assume G has a Hamiltonian path from s to t, get a satisfying assignment for ϕ.
- If the path is "normal", then define the assignment by: Set each x_{i} true if path goes L to R through x_{i} 's gadget, false if it goes R to L .
- To see that this satisfies ϕ, consider any clause C_{j}.
- The path goes through C_{j} 's node by:
- If the second, then:
- x_{i} is false, since path goes R-L.
- By the way the detour edges are

C_{j} pair in x_{i} row

C_{j} pair in x_{i} row set, C_{j} contains literal $\neg \mathrm{x}_{\mathrm{i}}$.
- So C_{j} is satisfied by $\neg \mathrm{x}_{\mathrm{i}}$.

$3 S A T \leq_{p}$ DHAMPATH

- Claim: ϕ is satisfiable iff the graph G has a Hamiltonian path from s to t.
- Proof: \Leftarrow
- Assume G has a Hamiltonian path from s to t.
- If the path is normal, then it yields a satisfying assignment.
- It remains to show that the path is normal (goes in order through the gadgets, top to bottom, going one way or the other through each crossbar, and detouring to pick up the C_{j} nodes),
- The only problem (hand-waving) is if a detour doesn't work right, but jumps from one gadget to another, e.g.:
- But then the Ham. path could never reach a_{2} :
- Can reach a_{2} only from a_{1}, a_{3}, and (possibly) C_{j}.
- But a_{1} and C_{j} already lead elsewhere.
- And reaching a_{2} from a_{3} leaves nowhere to go from a_{2}, stuck.

Summary: DHAMPATH

- We have proved 3 SAT \leq_{p} DHAMPATH.
- So DHAMPATH is NP-complete.
- Can prove similar result for DHAMCIRCUIT $=\{\langle G\rangle \mid G$ is a directed graph, and there is a circuit in G that passes through each vertex of G exactly once \}
- Theorem: 3SAT \leq_{p} DHAMCIRCUIT.
- Proof:
- Same construction, but wrap around, identifying s and t nodes.
- Now a satisfying assignment for ϕ corresponds to a Hamiltonian circuit.

Identify these two s nodes.

UHAMPATH and UHAMCIRCUIT

- Same questions about paths/circuits in undirected graphs.
- UHAMPATH $=\{\langle\mathrm{G}, \mathrm{s}, \mathrm{t}\rangle \mid \mathrm{G}$ is an undirected graph, s and t are two distinct vertices, and there is a path from s to t in G that passes through each vertex of G exactly once \}
- UHAMCIRCUIT $=\{\langle G\rangle \mid G$ is an undirected graph, and there is a circuit in G that passes through each vertex of G exactly once \}
- Theorem: Both are NP-complete.
- Obviously in NP.
- To show NP-hardness, reduce the digraph versions of the problems to the undirected versions---no need to consider Boolean formulas again.
- DHAMPATH \leq_{p} UHAMPATH
- DHAMCIRCUIT \leq_{p} UHAMCIRCUIT

DHAMPATH \leq_{p} UHAMPATH

- UHAMPATH $=\{\langle G, s, t\rangle \mid G$ is an undirected graph, s and t are two distinct vertices, and there is a path from s to t in G that passes through each vertex of G exactly once \}
- Map <G, s, t> (directed) to <G', s', t'> (undirected) so that $<\mathrm{G}, \mathrm{s}, \mathrm{t}\rangle \in \operatorname{DHAMPATH}$ iff $\left\langle\mathrm{G}^{\prime}, \mathrm{s}^{\prime}, \mathrm{t}^{\prime}\right\rangle \in$ UHAMPATH.
- Example:

DHAMPATH \leq_{p} UHAMPATH

- In general:

- Replace each vertex x other than s, t with vertices x_{1}, x_{2}, x_{3}, connected in a line.
- Replace s with just s_{3}, t with just t_{1}.
- For each directed edge from x to y in G, except incoming edges of s and outgoing edges of t, include undirected edge between x_{3} and y_{1}.
- Don't include anything for incoming edges of s or outgoing edges of $t--$ not needed since they can't be part of a Ham. path in G from s to t.

DHAMPATH \leq_{p} UHAMPATH

- In general:

- Replace each vertex x other than s, t with $x_{1}--x_{2}--x_{3}$.
- Replace s with s_{3}, t with t_{1}.
- For each directed edge from x to y in G, except incoming edges of s and outgoing edges of t, include $x_{3}-\cdots-y_{1}$.
- $\mathrm{G}^{\prime}=$ the resulting undirected graph; $\mathrm{s}^{\prime}=\mathrm{s}_{3} ; \mathrm{t}^{\prime}=\mathrm{t}_{1}$
- Claim G has directed Hamiltonian path from s to t iff G^{\prime} has an undirected Hamiltonian path from s^{\prime} to t^{\prime}.
- Idea: Indices 1,2,3 enforce consistent direction of traversal.
- Proof LTTR (in book).

Summary: UHAMPATH

- We have proved DHAMPATH \leq_{p} UHAMPATH.
- So UHAMPATH is NP-complete.
- Can prove similar result for

UHAMCIRCUIT $=\{<G>\mid G$ is an undirected graph, and there is a circuit in G that passes through each vertex of G exactly once \}

- Theorem: DHAMCIRCUIT \leq_{p} UHAMCIRCUIT.
- Proof:
- Similar construction.

The Traveling Salesman Problem

Traveling Salesman Problem (TSP)

- Variant of UHAMCIRCUIT.
- n cities = vertices, in a complete (undirected) graph.
- Each edge (u,v) has a cost, c(u,v), a nonnegative integer.
- Salesman should visit all cities, each just once, at low cost.
- Express as a language: TSP $=\{\langle G, c, k\rangle \mid G=(V, E)$ is a complete graph, $c: E \rightarrow N$, $\mathrm{k} \in \mathrm{N}$, and G has a cycle visiting each node exactly once, with total cost $\leq \mathrm{k}$ \}
- Theorem: TSP is NP-complete.
- Proof:
- TSP \in NP: Guess tour and verify.
- TSP is NP-hard: Show UHAMCIRCUIT \leq_{p} TSP.
- Map <G> (undirected graph) to <G', $\mathrm{c}^{\prime}, \mathrm{k}^{\prime}>$ so that G has a Ham. circuit iff G^{\prime} with cost function c^{\prime} has a tour of total cost at most k^{\prime}.

UHAMCIRCUIT \leq_{p} TSP

- $\operatorname{TSP}=\{\langle G, c, k>| G=(V, E)$ is a complete graph, $c: E \rightarrow$ $N, k \in N$, and G has a cycle visiting each node exactly once, with total cost $\leq \mathrm{k}\}$
- Map <G> (undirected graph) to <G', $\mathrm{c}^{\prime}, \mathrm{k}^{\prime}>$ so that G has a Ham. circuit iff G^{\prime} with cost function c^{\prime} has a tour of total cost $\leq \mathrm{k}^{\prime}$.
- Define mapping so that a Ham. circuit corresponds closely with a tour of cost $\leq \mathrm{k}^{\prime}$.
$-G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$, where $V^{\prime}=V$, all vertices of $G, E^{\prime}=$ all edges (complete graph).
$-c^{\prime}(u, v)=1$ if $(u, v) \notin E, 0$ if $(u, v) \in E$.
- $\mathrm{k}^{\prime}=0$.
- Example:

UHAMCIRCUIT \leq_{p} TSP

- TSP $=\{<G, c, k>\mid G=(V, E)$ is a complete graph, $\mathrm{c}: \mathrm{E} \rightarrow \mathrm{N}, \mathrm{k} \in \mathrm{N}$, and G has a cycle visiting each node exactly once, with total cost $\leq \mathrm{k}\}$
- Map <G> (undirected graph) to <G', c', k'>:
$-\mathrm{G}^{\prime}=\left(\mathrm{V}^{\prime}, \mathrm{E}^{\prime}\right)$, where $\mathrm{V}^{\prime}=\mathrm{V}$, all vertices of $\mathrm{G}, \mathrm{E}^{\prime}=$ all edges (complete graph).
$-c^{\prime}(u, v)=1$ if $(u, v) \notin E, 0$ if $(u, v) \in E$.
$-k^{\prime}=0$.
- Claim: G has a Ham. circuit iff G' with cost function c^{\prime} has a tour of total cost $\leq \mathrm{k}^{\prime}$.
- Proof:
\Rightarrow If G has a Ham. circuit, all its edges have cost 0 in G^{\prime} with c^{\prime}, so we have a circuit of cost 0 in G^{\prime}.
\Leftarrow Tour of cost 0 in G^{\prime} must consist of edges of cost 0 , which are edges in G .

More Examples, Revisited

SUBSET-SUM

- SUBSET-SUM $=\{<S, t\rangle \mid S$ is a multiset of $N, t \in N$, and t is expressible as the sum of some of the elements of S \}
- Example: $\mathrm{S}=\{2,2,4,5,5,7\}, \mathrm{t}=13$ $<S, t>\in$ SUBSET-SUM, because $7+4+2=13$
- Theorem: SUBSET-SUM is NP-complete.
- Proof:
- Show 3SAT \leq_{p} SUBSET-SUM.
- Tricky, detailed, see book.

PARTITION

- PARTITION $=\{<S\rangle \mid S$ is a multiset of N and S can be split into multisets S_{1} and S_{2} having equal sums \}
- Example: $S=\{2,2,4,5,5,7\}$ $S \notin$ PARTITION, since the sum is odd
- Example: $\mathrm{T}=\{2,2,5,6,9,12\}$
$\mathrm{T} \in \mathrm{PARTITION}$, since $2+2+5+9=6+12$.
- Theorem: PARTITION is NP-complete.
- Proof:
- Show SUBSET-SUM \leq_{p} PARTITION.
- Simple...in recitation?

MULTIPROCESSOR SCHEDULING

- MPS = \{ <S, m, D > |
-S is a multiset of N (represents durations for tasks),
$-\mathrm{m} \in \mathrm{N}$ (number of processors), and
$-\mathrm{D} \in \mathrm{N}$ (deadline),
and S can be written as $S_{1} \cup S_{2} \cup \ldots \cup S_{m}$ such that, for every $\left.\mathrm{i}, \operatorname{sum}\left(\mathrm{S}_{\mathrm{i}}\right) \leq \mathrm{D}\right\}$
- Theorem: MPS is NP-complete.
- Proof:
- Show PARTITION \leq_{p} MPS.
- Simple...in recitation?

Next time...

- Probabilistic Turing Machines and Probabilistic Time Complexity Classes
- Reading:
- Sipser Section 10.2

MIT OpenCourseWare
http://ocw.mit.edu

$6.045 \mathrm{~J} / 18.400 \mathrm{~J}$ Automata, Computability, and Complexity

Spring 2011

For information about citing these materials or our Terms of Use, visit: hhttp://ocw.mit.edu/terms.

