6.045: Automata, Computability, and Complexity (GITCS)

Class 15 Nancy Lynch

Today: More Complexity Theory

- Polynomial-time reducibility, NP-completeness, and the Satisfiability (SAT) problem
- Topics:
 - Introduction (Review and preview)
 - Polynomial-time reducibility, \leq_p
 - Clique \leq_p VertexCover and vice versa
 - NP-completeness
 - SAT is NP-complete
- Reading:
 - Sipser Sections 7.4-7.5
- Next:
 - Sipser Sections 7.4-7.5

- P = { L | there is some polynomial-time deterministic Turing machine that decides L }
- NP = { L | there is some polynomial-time nondeterministic Turing machine that decides L }
- Alternatively, L ∈ NP if and only if (∃ V, a polynomial-time verifier) (∃ p, a polynomial) such that:

$$x \in L \text{ iff } (\exists c, |c| \le p(|x|)) [V(x, c) accepts]$$

- To show that L ∈ NP, we need only exhibit a suitable verifier V and show that it works (which requires saying what the certificates are).
- $P \subseteq NP$, but it's not known whether P = NP.

- P = { L | ∃ poly-time deterministic TM that decides L }
- NP = { L | ∃ poly-time nondeterministic TM that decides L }
- L ∈ NP if and only if (∃ V, poly-time verifier) (∃ p, poly)
 x ∈ L iff (∃ c, |c| ≤ p(|x|)) [V(x, c) accepts]
- Some languages are in NP, but are not known to be in P (and are not known to not be in P):
 - SAT = { $< \phi > | \phi$ is a satisfiable Boolean formula }
 - 3COLOR = { < G > | G is an (undirected) graph whose vertices can be colored with ≤ 3 colors with no 2 adjacent vertices colored the same }
 - CLIQUE = { < G, k > | G is a graph with a k-clique }
 - VERTEX-COVER = { < G, k > | G is a graph having a vertex cover of size k }

CLIQUE

- CLIQUE = { < G, k > | G is a graph with a k-clique }
- k-clique: k vertices with edges between all pairs in the clique.
- In NP, not known to be in P, not known to not be in P.

- 3-cliques: { b, c, d }, { c, d, f }
- Cliques are easy to verify, but may be hard to find.

CLIQUE

CLIQUE = { < G, k > | G is a graph with a k-clique }

- Input to the VC problem: < G, 3 >
- Certificate, to show that < G, 3 > ∈ CLIQUE, is { b, c, d } (or { c, d, f }).
- Polynomial-time verifier can check that { b, c, d } is a 3-clique.

VERTEX-COVER

- VERTEX-COVER = { < G, k > | G is a graph with a vertex cover of size k }
- Vertex cover of G = (V, E): A subset C of V such that, for every edge (u,v) in E, either u ∈ C or v ∈ C.
 A set of vertices that "covers" all the edges.
- In NP, not known to be in P, not known to not be in P.

- 3-vc: { a, b, d }
- Vertex covers are easy to verify, may be hard to find.

VERTEX-COVER

VERTEX-COVER = { < G, k > | G is a graph with a vertex cover of size k }

- Input to the VC problem: < G, 3 >
- Certificate, to show that $\langle G, 3 \rangle \in VC$, is { a, b, d }.
- Polynomial-time verifier can check that { a, b, d } is a 3-vertex-cover.

- Languages in NP, not known to be in P, not known to not be in P:
 - SAT = { $< \phi > | \phi$ is a satisfiable Boolean formula }
 - 3COLOR = { < G > | G is a graph whose vertices can be colored with ≤ 3 colors with no 2 adjacent vertices colored the same }
 - CLIQUE = { < G, k > | G is a graph with a k-clique }
 - VERTEX-COVER = { < G, k > | G is a graph with a vc of size k }
- There are many problems like these, where some structure seems hard to find, but is easy to verify.
- Q: Are these easy (in P) or hard (not in P)?
- Not yet known. We don't yet have the math tools to answer this question.
- We can say something useful to reduce the apparent diversity of such problems---that many such problems are "reducible" to each other.
- So in a sense, they are the "same problem".

 Definition: A ⊆ Σ* is polynomial-time reducible to B ⊆ Σ*, A ≤_p B, provided there is a polynomial-time computable function f: Σ* → Σ* such that:

($\forall w$) [$w \in A$ if and only if f(x) $\in B$]

- Extends to different alphabets Σ_1 and Σ_2 .
- Same as mapping reducibility, ≤_m, but with a polynomial-time restriction.

 Definition: A ⊆ Σ* is polynomial-time reducible to B ⊆ Σ*, A ≤_p B, provided there is a polynomial-time computable function f: Σ* → Σ* such that:

 $(\forall w) [w \in A \text{ if and only if } f(x) \in B]$

- Theorem: (Transitivity of \leq_p) If $A \leq_p B$ and $B \leq_p C$ then $A \leq_p C$.
- Proof:
 - Let f be a polynomial-time reducibility function from A to B.
 - Let g be a polynomial-time reducibility function from B to C.

• Definition: $A \leq_p B$, provided there is a polynomial-time computable function f: $\Sigma^* \rightarrow \Sigma^*$ such that:

 $(\forall w) [w \in A \text{ if and only if } f(w) \in B]$

- Theorem: If $A \leq_p B$ and $B \leq_p C$ then $A \leq_p C$.
- Proof:
 - Let f be a polynomial-time reducibility function from A to B.
 - Let g be a polynomial-time reducibility function from B to C.

h(w)

- Define h(w) = g(f(w)).
- Then $w \in A$ if and only if $f(w) \in B$ if and only if $g(f(w)) \in C$.
- h is poly-time computable:

- Theorem: If $A \leq_p B$ and $B \leq_p C$ then $A \leq_p C$.
- Proof:
 - Let f be a polynomial-time reducibility function from A to B.
 - Let g be a polynomial-time reducibility function from B to C.

- Define h(w) = g(f(w)).
- h is poly-time computable:
 - |f(w)| is bounded by a polynomial in |w|.
 - Time to compute g(f(w)) is bounded by a polynomial in |f(w)|, and therefore by a polynomial in |w|.
 - Uses the fact that substituting one polynomial for the variable in another yields yet another polynomial.

• Definition: $A \leq_p B$, provided there is a polynomial-time computable function f: $\Sigma^* \rightarrow \Sigma^*$ such that:

 $(\forall w) [w \in A \text{ if and only if } f(x) \in B]$

- Theorem: If $A \leq_p B$ and $B \in P$ then $A \in P$.
- Proof:
 - Let f be a polynomial-time reducibility function from A to B.
 - Let M be a polynomial-time decider for B.
 - To decide whether $w \in A$:
 - Compute x = f(w).
 - Run M to decide whether $x \in B$, and accept / reject accordingly.
 - Polynomial time.
- Corollary: If $A \leq_p B$ and A is not in P then B is not in P.
- Easiness propagates downward, hardness propagates upward.

- Can use \leq_{p} to relate the difficulty of two problems:
- Theorem: If A ≤_p B and B ≤_p A then either both A and B are in P or neither is.
- Also, for problems in NP:
- Theorem: If $A \leq_p B$ and $B \in NP$ then $A \in NP$.
- Proof:
 - Let f be a polynomial-time reducibility function from A to B.
 - Let M be a polynomial-time nondeterministic TM that decides B.
 - Poly-bounded on all branches.
 - Accepts on at least one branch iff and only if input string is in B.
 - NTM M' to decide membership in A:
 - On input w:
 - Compute x = f(w); |x| is bounded by a polynomial in |w|.
 - Run M on x and accept/reject (on each branch) if M does.
 - Polynomial time-bounded NTM.

- Theorem: If $A \leq_p B$ and $B \in NP$ then $A \in NP$.
- Proof:
 - Let f be a polynomial-time reducibility function from A to B.
 - Let M be a polynomial-time nondeterministic TM that decides B.
 - NTM M' to decide membership in A:
 - On input w:
 - Compute x = f(w); |x| is bounded by a polynomial in |w|.
 - Run M on x and accept/reject (on each branch) if M does.
 - Polynomial time-bounded NTM.
 - Decides membership in A:
 - M' has an accepting branch on input w iff M has an accepting branch on f(w), by definition of M', iff f(w) \in B, iff w \in A, since M decides B, since A \leq_p B using f.
 - So M' is a poly-time NTM that decides A, $A \in NP$.

- Theorem: If $A \leq_p B$ and $B \in NP$ then $A \in NP$.
- Corollary: If $A \leq_p B$ and A is not in NP, then B is not in NP.

- A technical result (curiosity):
- Theorem: If A ∈ P and B is any nontrivial language (meaning not Ø, not Σ*), then A ≤_p B.
- Proof:
 - Suppose $A \in P$.
 - Suppose B is a nontrivial language; pick $b_0 \in B$, $b_1 \in B^c$.
 - Define $f(w) = b_0$ if $w \in A$, b_1 if w is not in A.
 - f is polynomial-time computable; why?
 - Because A is polynomial time decidable.
 - Clearly $w \in A$ if and only if $f(w) \in B$.
 - So A \leq_p B.
- Trivial reduction: All the work is done by the decider for A, not by the reducibility and the decider for B.

- Two illustrations of \leq_p .
- Both CLIQUE and VC are in NP, not known to be in P, not known to not be in P.
- However, we can show that they are essentially equivalent: polynomial-time reducible to each other.
- So, although we don't know how hard they are, we know they are (approximately) equally hard.
 - E.g., if either is in P, then so is the other.
- Theorem: $CLIQUE \leq_p VC$.
- Theorem: $VC \leq_p CLIQUE$.

- Theorem: $CLIQUE \leq_p VC$.
- Proof:
 - Given input < G, k > for CLIQUE, transform to input
 G', k' > for VC, in poly time, so that:
 - < G, k > \in CLIQUE if and only if < G', k' > \in VC.
- Example:

$$G = (V, E), k = 4$$

$$G' = (V, E'), k' = n - k = 3$$

- < G, k > \in CLIQUE if and only if < G', k' > \in VC.
- Example: G = (V, E), k = 4, G' = (V, E'), k' = n k = 3

- $E' = (V \times V) E$, complement of edge set
- G has clique of size 4 (left nodes), G' has a vertex cover of size 7 4 = 3 (right nodes).
- All edges between 2 nodes on left are in E, hence not in E', so right nodes cover all edges in E'.

- Theorem: $CLIQUE \leq_p VC$.
- Proof:
 - Given input < G, k > for CLIQUE, transform to input < G', k' > for VC, in poly time, so that < G, k > \in CLIQUE iff < G', k' > \in VC.
 - General transformation: $f(\langle G, k \rangle)$, where G = (V, E) and |V| = n, = $\langle G', n-k \rangle$, where G' = (V, E') and $E' = (V \times V) - E$.
 - Transformation is obviously polynomial-time.
 - Claim: G has a k-clique iff G' has a size (n-k) vertex cover.
 - Proof of claim: Two directions:
 - \Rightarrow Suppose G has a k-clique, show G' has an (n-k)-vc.
 - Suppose C is a k-clique in G.
 - V C is an (n-k)-vc in G':
 - Size is obviously right.
 - All edges between nodes in C appear in G, so all are missing in G'.
 - So nodes in V-C cover all edges of G'.

- Theorem: $CLIQUE \leq_p VC$.
- Proof:
 - Given input < G, k > for CLIQUE, transform to input < G', k' > for VC, in poly time, so that < G, k > ∈ CLIQUE iff < G', k' > ∈ VC.
 - General transformation: $f(\langle G, k \rangle)$, where G = (V, E) and |V| = n,

= < G', n-k >, where G' = (V, E') and E' = (V \times V) – E.

- Claim: G has a k-clique iff G' has a size (n-k) vertex cover.
- Proof of claim: Two directions:
 - \leftarrow Suppose G' has an (n-k)-vc, show G has a k-clique.
 - Suppose D is an (n-k)-vc in G'.
 - V D is a k-clique in G:
 - Size is obviously right.
 - All edges between nodes in V-D are missing in G', so must appear in G.
 - So V-D is a clique in G.

- Theorem: $VC \leq_p CLIQUE$.
- **Proof:** Almost the same.
 - Given input < G, k > for VC, transform to input < G', k' > for CLIQUE, in poly time, so that:
 - < G, k > \in VC if and only if < G', k' > \in CLIQUE.
- Example:

$$G = (V, E), k = 3$$

- < G, k > \in VC if and only if < G', k' > \in CLIQUE.
- Example: G = (V, E), k = 3, G' = (V, E'), k' = 4

- $E' = (V \times V) E$, complement of edge set
- G has a 3-vc (right nodes), G' has clique of size 7 3 = 4 (left nodes).
- All edges between 2 nodes on left are missing from G, so are in G', so left nodes form a clique in G'.

- Theorem: $VC \leq_p CLIQUE$.
- Proof:
 - Given input < G, k > for VC, transform to input < G', k' > for CLIQUE, in poly time, so that < G, k > \in VC iff < G', k' > \in CLIQUE.
 - General transformation: Same as before.

 $f(\langle G, k \rangle)$, where G = (V, E) and |V| = n,

 $= \langle G', n-k \rangle$, where G' = (V, E') and $E' = (V \times V) - E$.

- Claim: G has a k-vc iff G' has an (n-k)-clique.
- Proof of claim: Similar to before, LTTR.

- We have shown:
- Theorem: $CLIQUE \leq_p VC$.
- Theorem: $VC \leq_p CLIQUE$.
- So, they are essentially equivalent.
- Either both CLIQUE and VC are in P or neither is.

- ≤_p allows us to relate problems in NP, saying which allow us to solve which others efficiently.
- Even though we don't know whether all of these problems are in P, we can use \leq_p to impose some structure on the class NP:
- $A \rightarrow B$ here means $A \leq_p B$.
- Sets in NP P might not be totally ordered by \leq_p : we might have A, B with neither $A \leq_p B$ nor $B \leq_p A$:

- Some languages in NP are hardest, in the sense that every language in NP is ≤_p-reducible to them.
- Call these NP-complete.
- Definition: Language B is NP-complete if both of the following hold:

(a) $B \in NP$, and

(b) For any language $A \in NP$, $A \leq_p B$.

 Sometimes, we consider languages that aren't, or might not be, in NP, but to which all NP languages are reducible.

NP

Ρ

- Call these NP-hard.
- Definition: Language B is NP-hard if, for any language A ∈ NP, A ≤_p B.

- Today, and next time, we'll:
 - Give examples of interesting problems that are NPcomplete, and
 - Develop methods for showing NP-completeness.
- Theorem: ∃B, B is NP-complete.
 - There is at least one NP-complete problem.
 - We'll show this later.
- Theorem: If A, B, are NP-complete, then $A \leq_p B$.
 - Two NP-complete problems are essentially equivalent (up to \leq_p).
- **Proof:** $A \in NP$, B is NP-hard, so $A \leq_p B$ by definition.

- Theorem: If some NP-complete language is in P, then P = NP.
 - That is, if a polynomial-time algorithm exists for any NPcomplete problem, then the entire class NP collapses into P.
 - Polynomial algorithms immediately arise for all problems in NP.
- Proof:
 - Suppose B is NP-complete and B \in P.
 - Let A be any language in NP; show $A \in P$.
 - We know $A \leq_{D} B$ since B is NP-complete.
 - Then $A \in P$, since $B \in P$ and "easiness propagates downward".
 - Since every A in NP is also in P, NP \subseteq P.
 - Since $P \subseteq NP$, it follows that P = NP.

- Theorem: The following are equivalent.
 - 1. P = NP.
 - 2. Every NP-complete language is in P.
 - 3. Some NP-complete language is in P.
- Proof:
 - $1 \Rightarrow 2$:
 - Assume P = NP, and suppose that B is NP-complete.
 - Then $B \in NP$, so $B \in P$, as needed.
 - $2 \Rightarrow 3$:
 - Immediate because there is at least NP-complete language.
 - $3 \Rightarrow 1$:
 - By the previous theorem.

Beliefs about P vs. NP

- Most theoretical computer scientists believe $P \neq NP$.
- Why?
- Many interesting NP-complete problems have been discovered over the years, and many smart people have tried to find fast algorithms; no one has succeeded.
- The problems have arisen in many different settings, including logic, graph theory, number theory, operations research, games and puzzles.
- Entire book devoted to them [Garey, Johnson].
- All these problems are essentially the same since all NPcomplete problems are polynomial-reducible to each other.
- So essentially the same problem has been studied in many different contexts, by different groups of people, with different backgrounds, using different methods.

Beliefs about P vs. NP

- Most theoretical computer scientists believe $P \neq NP$.
- Because many smart people have tried to find fast algorithms and no one has succeeded.
- That doesn't mean P ≠ NP; this is just some kind of empirical evidence.
- The essence of why NP-complete problems seem hard:
 - They have NP structure:

 $x \, \in \, L$ iff (∃ c, $|c| \leq p(|x|)$) [V(x, c) accepts],

where V is poly-time.

- Guess and verify.
- Seems to involve exploring a tree of possible choices, exponential blowup.
- However, no one has yet succeeded in proving that they actually are hard!
 - We don't have sharp enough methods.
 - So in the meantime, we just show problems are NP-complete.

- SAT = { < ϕ > | ϕ is a satisfiable Boolean formula }
- **Definition**: (Boolean formula):
 - Variables: $x, x_1, x_2, ..., y, ..., z, ...$
 - Can take on values 1 (true) or 0 (false).
 - Literal: A variable or its negated version: $x_1, \neg x_2, \neg x_1, \dots$
 - Operations: ∧ ∨ ¬
 - Boolean formula: Constructed from literals using operations, e.g.:

$$\phi = x \land ((y \land z) \lor (\neg y \land \neg z)) \land \neg (x \land z)$$

- **Definition**: (Satisfiability):
 - A Boolean formula is satisfiable iff there is an assignment of 0s and 1s to the variables that makes the entire formula evaluate to 1 (true).

- SAT = { < ϕ > | ϕ is a satisfiable Boolean formula }
- Boolean formula: Constructed from literals using operations, e.g.:

 $\phi = x \land ((y \land z) \lor (\neg y \land \neg z)) \land \neg (x \land z)$

- A Boolean formula is satisfiable iff there is an assignment of 0s and 1s to the variables that makes the entire formula evaluate to 1 (true).
- Example: ϕ above
 - Satisfiable, using the assignment x = 1, y = 0, z = 0.
 - $\text{ So } \phi \in \text{ SAT.}$

• Example: $x \land ((y \land z) \lor (\neg y \land z)) \land \neg (x \land z)$

- Not in SAT.
- x must be set to 1, so z must = 0.

- SAT = { < ϕ > | ϕ is a satisfiable Boolean formula }
- Theorem: SAT is NP-complete.
- Lemma 1: SAT \in NP.
- Lemma 2: SAT is NP-hard.
- Proof of Lemma 1:
 - Recall: L ∈ NP if and only if (∃ V, poly-time verifier) (∃ p, poly) $x \in L$ iff (∃ c, |c| ≤ p(|x|)) [V(x, c) accepts]
 - So, to show SAT \in NP, it's enough to show (\exists V) (\exists p)

 $\phi \in SAT \text{ iff } (\exists c, |c| \le p(|x|)) [V(\phi, c) \text{ accepts }]$

- We know: $\phi \in SAT$ iff there is an assignment to the variables such that ϕ with this assignment evaluates to 1.
- So, let certificate c be the assignment.
- Let verifier V take a formula ϕ and an assignment c and accept exactly if ϕ with c evaluates to true.
- Evaluate ϕ bottom-up, takes poly time.

- Lemma 2: SAT is NP-hard.
- Proof of Lemma 2:
 - Need to show that, for any $A \in NP$, $A \leq_{D} SAT$.
 - Fix $A \in NP$.
 - Construct a poly-time f such that

$$w \in A$$
 if and only if $f(w) \in SAT$.

A formula, write it as ϕ_w .

- By definition, since $A \in NP$, there is a nondeterministic TM M that decides A in polynomial time.
- Fix polynomial p such that M on input w always halts, on all branches, in time $\leq p(|w|)$; assume $p(|w|) \geq |w|$.
- $w \in A$ if and only if there is an accepting computation history (CH) of M on w.

- Lemma 2: SAT is NP-hard.
- Proof, cont'd:
 - Need w \in A if and only if f(w) (= ϕ_w) \in SAT.
 - $w \in A$ if and only if there is an accepting CH of M on w.
 - So we must construct formula ϕ_w to be satisfiable iff there is an accepting CH of M on w.
 - Recall definitions of computation history and accepting computation history from Post Correspondence Problem: # C_0 # C_1 # C_2 ...
 - Configurations include tape contents, state, head position.
 - We construct ϕ_w to describe an accepting CH.
 - Let M = (Q, Σ , Γ , δ , q₀, q_{acc}, q_{rej}) as usual.
 - Instead of lining up configs in a row as before, arrange in (p(|w|) + 1) row × (p(|w|) + 3) column matrix:

Proof that SAT is NP-hard

- ϕ_w will be satisfiable iff there is an accepting CH of M on w.
- Let $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{acc}, q_{rej})$.
- Arrange configs in $(p(|w|) + 1) \times (p(|w|) + 3)$ matrix:

#	\mathbf{q}_0	W ₁	W_2	W_3	•••	W _n	 	•••	 #
#									#
#									#
! #									 #

- Successive configs, ending with accepting config.
- Assume WLOG that each computation takes exactly p(|w|) steps, so we use p(|w|) + 1 rows.
- p(|w|) + 3 columns: p(|w|) for the interesting portion of the tape, one for head and state, two for endmarkers.

Proof that SAT is NP-hard

- ϕ_w is satisfiable iff there is an accepting CH of M on w.
- Entries in the matrix are represented by Boolean variables:
 - Define $C = Q \cup \Gamma \cup \{ \# \}$, alphabet of possible matrix entries.
 - Variable $x_{i,j,c}$ represents "the entry in position (i, j) is c".
- Define ϕ_w as a formula over these $x_{i,j,c}$ variables, satisfiable if and only if there is an accepting computation history for w (in matrix form).
- Moreover, an assignment of values to the $x_{i,j,c}$ variables that satisfies ϕ_w will correspond to an encoding of an accepting computation.
- Specifically, $\phi_w = \phi_{cell} \wedge \phi_{start} \wedge \phi_{accept} \wedge \phi_{move}$, where:
 - $-\phi_{cell}$: There is exactly one value in each matrix location.
 - ϕ_{start} : The first row represents the starting configuration.
 - $-\phi_{accept}$: The last row is an accepting configuration.
 - ϕ_{move} : Successive rows represent allowable moves of M.

φ_{cell}

• For each position (i,j), write the conjunction of two formulas:

 $\bigvee_{c \in C} x_{i,j,c}$: Some value appears in position (i,j).

 $\bigwedge_{c, d \in C, c \neq d} (\neg x_{i,j,c} \lor \neg x_{i,j,d})$: Position (i,j) doesn't contain two values.

- ϕ_{cell} : Conjoin formulas for all positions (i,j).
- Easy to construct the entire formula ϕ_{cell} given w input.
- Construct it in polynomial time.
- Sanity check: Length of formula is polynomial in |w|:
 - $O((p(|w|)^2))$ subformulas, one for each (i,j).
 - Length of each subformula depends on C, O($|C|^2$).

• The right symbols appear in the first row: # $q_0 w_1 w_2 w_3 \dots w_n -- -- \dots -- #$

$$\phi_{\text{start}}: X_{1,1,\#} \land X_{1,2,q0} \land X_{1,3,w1} \land X_{1,4,w2} \land \dots \\ \land X_{1,n+2,wn} \land X_{1,n+3,--} \land \dots \\ \land X_{1,p(n)+2,--} \land X_{1,p(n)+3,\#}$$

• For each j, $2 \le j \le p(|w|) + 2$, write the formula:

X_{p(|w|)+1,j,qacc}

- q_{acc} appears in position j of the last row.
- ϕ_{accept} : Take disjunction (or) of all formulas for all j.
- That is, q_{acc} appears in some position of the last row.

ϕ_{move}

- As for PCP, correct moves depend on correct changes to local portions of configurations.
- It's enough to consider 2 × 3 rectangles:
- If every 2 × 3 rectangle is "good", i.e., consistent with the transitions, then the entire matrix represents an accepting CH.
- For each position (i,j), 1 ≤ i ≤ p(|w|), 1 ≤ j ≤ p(|w|)+1, write a formula saying that the rectangle with upper left at (i,j) is "good".
- Then conjoin all of these, O(p(|w|)²) clauses.
- Good tiles for (i,j), for a, b, c in Γ:

а	b	С
а	b	С

#	а	b
#	а	b

а	b	#
а	b	#

¢_{move}

- Other good tiles are defined in terms of the nondeterministic transition function δ .
- E.g., if δ(q₁, a) includes tuple (q₂, b, L), then the following are good:
 - Represents the move directly; for any c:
 - Head moves left out of the rectangle; for any c, d:
 - Head is just to the left of the rectangle; for any c, d:
 - Head at right; for any c, d, e:
 - And more, for #, etc.
- Analogously if $\delta(q_1, a)$ includes (q_2, b, R) .
- Since M is nondeterministic, δ(q₁, a) may contain several moves, so include all the tiles.

С	q ₁	а
q ₂	С	b

q ₁	а	С
d	b	С

а	С	d
b	С	d

d	С	q ₁
d	q ₂	С

е	d	С
е	d	q ₂

- The good tiles give partial constraints on the computation.
- When taken together, they give enough constraints so that only a correct CH can satisfy them all.
- The part (conjunct) of ϕ_{move} for (i,j) should say that the rectangle with upper left at (i,j) is good:
- It is simply the disjunction (or), over all allowable tiles, of the subformula:

a1	a2	a3
b1	b2	b3

$$X_{i,j,a1} \land X_{i,j+1,a2} \land X_{i,j+2,a3} \land X_{i+1,j,b1} \land X_{i+1,j+1,b2} \land X_{i+1,j+2,b3}$$

• Thus, ϕ_{move} is the conjunction over all (i,j), of the disjunction over all good tiles, of the formula just above.

- φ_{move} is the conjunction over all (i,j), of the disjunction over all good tiles, of the given sixterm conjunctive formula.
- Q: How big is the formula ϕ_{move} ?
- O(p(|w|)²) clauses, one for each (i,j) pair.
- Each clause is only constant length, O(1).
 - Because machine M yields only a constant number of good tiles.
 - And there are only 6 terms for each tile.
- Thus, length of ϕ_{move} is polynomial in |w|.
- $\phi_w = \phi_{cell} \land \phi_{start} \land \phi_{accept} \land \phi_{move}$, length also poly in |w|.

ϕ_{move}

- $\phi_w = \phi_{cell} \land \phi_{start} \land \phi_{accept} \land \phi_{move}$, length poly in |w|.
- More importantly, can produce ϕ_w from w in time that is polynomial in |w|.
- $w \in A$ if and only if M has an accepting CH for w if and only if ϕ_w is satisfiable.
- Thus, $A \leq_p SAT$.
- Since A was any language in NP, this proves that SAT is NP-hard.
- Since SAT is in NP and is NP-hard, SAT is NP-complete.

Next time...

- NP-completeness---more examples
- Reading:
 - Sipser Sections 7.4-7.5

6.045J / 18.400J Automata, Computability, and Complexity Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.