6.045: Automata, Computability, and Complexity (GITCS)

Class 15
Nancy Lynch

Today: More Complexity Theory

- Polynomial-time reducibility, NP-completeness, and the Satisfiability (SAT) problem
- Topics:
- Introduction (Review and preview)
- Polynomial-time reducibility, \leq_{p}
- Clique \leq_{p} VertexCover and vice versa
- NP-completeness
- SAT is NP-complete
- Reading:
- Sipser Sections 7.4-7.5
- Next:
- Sipser Sections 7.4-7.5

Introduction

Introduction

- $P=\{L \mid$ there is some polynomial-time deterministic Turing machine that decides $L\}$
- $N P=\{L$ | there is some polynomial-time nondeterministic Turing machine that decides L \}
- Alternatively, $L \in N P$ if and only if ($\exists \mathrm{V}$, a polynomial-time verifier) ($\exists \mathrm{p}$, a polynomial) such that:

$$
x \in L \text { iff }(\exists c,|c| \leq p(|x|))[V(x, c) \text { accepts }]
$$

- To show that $L \in N P$, we need only exhibit a suitable verifier V and show that it works (which requires saying what the certificates are).
- $P \subseteq N P$, but it's not known whether $P=N P$.

Introduction

- $P=\{L \mid \exists$ poly-time deterministic TM that decides $L\}$
- NP $=\{\mathrm{L} \mid \exists$ poly-time nondeterministic TM that decides L$\}$
- $L \in$ NP if and only if ($\exists \mathrm{V}$, poly-time verifier) ($\exists \mathrm{p}$, poly) $x \in L$ iff $(\exists \mathrm{c},|\mathrm{c}| \leq \mathrm{p}(|\mathrm{x}|))$ [$\mathrm{V}(\mathrm{x}, \mathrm{c})$ accepts]
- Some languages are in NP, but are not known to be in P (and are not known to not be in P):
- SAT $=\{\langle\phi\rangle \mid \phi$ is a satisfiable Boolean formula $\}$
$-3 C O L O R=\{\langle G\rangle \mid G$ is an (undirected) graph whose vertices can be colored with ≤ 3 colors with no 2 adjacent vertices colored the same \}
- CLIQUE $=\{\langle\mathrm{G}, \mathrm{k}\rangle \mid \mathrm{G}$ is a graph with a k -clique $\}$
- VERTEX-COVER $=\{\langle G, k\rangle \mid G$ is a graph having a vertex cover of size k \}

CLIQUE

- CLIQUE $=\{<\mathrm{G}, \mathrm{k}\rangle \mid \mathrm{G}$ is a graph with a k-clique $\}$
- k-clique: k vertices with edges between all pairs in the clique.
- In NP, not known to be in P, not known to not be in P.

- 3-cliques: $\{\mathrm{b}, \mathrm{c}, \mathrm{d}\},\{\mathrm{c}, \mathrm{d}, \mathrm{f}\}$
- Cliques are easy to verify, but may be hard to find.

CLIQUE

- CLIQUE $=\{<\mathrm{G}, \mathrm{k}>\mid \mathrm{G}$ is a graph with a k-clique $\}$

- Input to the VC problem: < G, $3>$
- Certificate, to show that $\langle\mathrm{G}, 3\rangle \in$ CLIQUE, is $\{\mathrm{b}, \mathrm{c}$, d \} (or \{ c, d, f \}).
- Polynomial-time verifier can check that $\{b, c, d\}$ is a 3-clique.

VERTEX-COVER

- VERTEX-COVER $=\{<G, k\rangle \mid G$ is a graph with a vertex cover of size k \}
- Vertex cover of G = (V, E): A subset C of V such that, for every edge (u, v) in E, either $u \in C$ or $v \in C$. - A set of vertices that "covers" all the edges.
- In NP, not known to be in P, not known to not be in P.
- 3-vc: $\{a, b, d\}$

- Vertex covers are easy to verify, may be hard to find.

VERTEX-COVER

- VERTEX-COVER $=\{\langle\mathrm{G}, \mathrm{k}\rangle \mid \mathrm{G}$ is a graph with a vertex cover of size k \}

- Input to the VC problem: < G, $3>$
- Certificate, to show that $\langle G, 3\rangle \in V C$, is $\{a, b, d\}$.
- Polynomial-time verifier can check that $\{a, b, d\}$ is a 3-vertex-cover.

Introduction

- Languages in NP, not known to be in P, not known to not be in P:
- SAT $=\{\langle\phi\rangle \mid \phi$ is a satisfiable Boolean formula $\}$
- 3COLOR $=\{\langle G\rangle \mid G$ is a graph whose vertices can be colored with \leq 3 colors with no 2 adjacent vertices colored the same \}
- CLIQUE $=\{\langle\mathrm{G}, \mathrm{k}\rangle \mid \mathrm{G}$ is a graph with a k -clique $\}$
- VERTEX-COVER $=\{\langle G, k\rangle \mid G$ is a graph with a vc of size $k\}$
- There are many problems like these, where some structure seems hard to find, but is easy to verify.
- Q: Are these easy (in P) or hard (not in P)?
- Not yet known. We don't yet have the math tools to answer this question.
- We can say something useful to reduce the apparent diversity of such problems---that many such problems are "reducible" to each other.
- So in a sense, they are the "same problem".

Polynomial-Time Reducibility

Polynomial-Time Reducibility

- Definition: $A \subseteq \Sigma^{*}$ is polynomial-time reducible to $B \subseteq \Sigma^{*}, A \leq_{p} B$, provided there is a polynomial-time computable function $\mathrm{f}: \Sigma^{*} \rightarrow \Sigma^{*}$ such that:

$$
(\forall w)[w \in A \text { if and only if } f(x) \in B]
$$

- Extends to different alphabets Σ_{1} and Σ_{2}.
- Same as mapping reducibility, \leq_{m}, but with a polynomial-time restriction.

Polynomial-Time Reducibility

- Definition: $\mathrm{A} \subseteq \Sigma^{*}$ is polynomial-time reducible to $\mathrm{B} \subseteq \Sigma^{*}$, $\mathrm{A} \leq_{\mathrm{p}} \mathrm{B}$, provided there is a polynomial-time computable function $f: \Sigma^{\star} \rightarrow \Sigma^{\star}$ such that:

$$
(\forall w)[w \in A \text { if and only if } f(x) \in B]
$$

- Theorem: (Transitivity of \leq_{p}) If $\mathrm{A} \leq_{p} \mathrm{~B}$ and $\mathrm{B} \leq_{p} \mathrm{C}$ then $\mathrm{A} \leq_{p} \mathrm{C}$.
- Proof:
- Let f be a polynomial-time reducibility function from A to B.
- Let g be a polynomial-time reducibility function from B to C .

Polynomial-Time Reducibility

- Definition: $\mathrm{A} \leq_{\mathrm{p}} \mathrm{B}$, provided there is a polynomial-time computable function f: $\Sigma^{*} \rightarrow \Sigma^{*}$ such that:

$$
(\forall w)[w \in A \text { if and only if } f(w) \in B]
$$

- Theorem: If $A \leq_{p} B$ and $B \leq_{p} C$ then $A \leq_{p} C$.
- Proof:
- Let f be a polynomial-time reducibility function from A to B.
- Let g be a polynomial-time reducibility function from B to C.

- Define $h(w)=g(f(w))$.
- Then $w \in A$ if and only if $f(w) \in B$ if and only if $g(f(w)) \in C$.
- h is poly-time computable:

Polynomial-Time Reducibility

- Theorem: If $\mathrm{A} \leq_{p} \mathrm{~B}$ and $\mathrm{B} \leq_{p} \mathrm{C}$ then $\mathrm{A} \leq_{\mathrm{p}} \mathrm{C}$.
- Proof:
- Let f be a polynomial-time reducibility function from A to B.
- Let g be a polynomial-time reducibility function from B to C .

- Define $h(w)=g(f(w))$.
- h is poly-time computable:
- $|f(w)|$ is bounded by a polynomial in $|w|$.
- Time to compute $g(f(w))$ is bounded by a polynomial in $|f(w)|$, and therefore by a polynomial in |w|.
- Uses the fact that substituting one polynomial for the variable in another yields yet another polynomial.

Polynomial-Time Reducibility

- Definition: $\mathrm{A} \leq_{\mathrm{p}} \mathrm{B}$, provided there is a polynomial-time computable function $\mathrm{f}: \Sigma^{\star} \rightarrow \Sigma^{\star}$ such that:

$$
(\forall w)[w \in A \text { if and only if } f(x) \in B]
$$

- Theorem: If $A \leq_{p} B$ and $B \in P$ then $A \in P$.
- Proof:
- Let f be a polynomial-time reducibility function from A to B.
- Let M be a polynomial-time decider for B .
- To decide whether $w \in A$:
- Compute $x=f(w)$.
- Run M to decide whether $x \in B$, and accept / reject accordingly.
- Polynomial time.
- Corollary: If $A \leq_{p} B$ and A is not in P then B is not in P.
- Easiness propagates downward, hardness propagates upward.

Polynomial-Time Reducibility

- Can use \leq_{p} to relate the difficulty of two problems:
- Theorem: If $A \leq_{p} B$ and $B \leq_{p} A$ then either both A and B are in P or neither is.
- Also, for problems in NP:
- Theorem: If $A \leq_{p} B$ and $B \in N P$ then $A \in N P$.
- Proof:
- Let f be a polynomial-time reducibility function from A to B.
- Let M be a polynomial-time nondeterministic TM that decides B.
- Poly-bounded on all branches.
- Accepts on at least one branch iff and only if input string is in B.
- NTM M' to decide membership in A:
- On input w:
- Compute $x=f(w) ;|x|$ is bounded by a polynomial in $|w|$.
- Run M on x and accept/reject (on each branch) if M does.
- Polynomial time-bounded NTM.

Polynomial-Time Reducibility

- Theorem: If $A \leq_{p} B$ and $B \in N P$ then $A \in N P$.
- Proof:
- Let f be a polynomial-time reducibility function from A to B .
- Let M be a polynomial-time nondeterministic TM that decides B.
- NTM M' to decide membership in A:
- On input w:
- Compute $x=f(w) ;|x|$ is bounded by a polynomial in $|w|$.
- Run M on x and accept/reject (on each branch) if M does.
- Polynomial time-bounded NTM.
- Decides membership in A:
- M' has an accepting branch on input w
iff M has an accepting branch on $f(w)$, by definition of M^{\prime}, iff $f(w) \in B$, since M decides B, iff $w \in A, \quad$ since $A \leq_{p} B$ using f.
- So M^{\prime} is a poly-time NTM that decides $\mathrm{A}, \mathrm{A} \in \mathrm{NP}$.

Polynomial-Time Reducibility

- Theorem: If $A \leq_{p} B$ and $B \in N P$ then $A \in N P$.
- Corollary: If $A \leq_{p} B$ and A is not in NP, then B is not in NP.

Polynomial-Time Reducibility

- A technical result (curiosity):
- Theorem: If $A \in P$ and B is any nontrivial language (meaning not \varnothing, not Σ^{\star}), then $\mathrm{A} \leq_{p} \mathrm{~B}$.
- Proof:
- Suppose A $\in P$.
- Suppose B is a nontrivial language; pick $b_{0} \in B, b_{1} \in B^{c}$.
- Define $f(w)=b_{0}$ if $w \in A, b_{1}$ if w is not in A.
- f is polynomial-time computable; why?
- Because A is polynomial time decidable.
- Clearly $w \in A$ if and only if $f(w) \in B$.
- So A $\leq_{p} B$.
- Trivial reduction: All the work is done by the decider for A , not by the reducibility and the decider for B.

CLIQUE and VERTEX-COVER

CLIQUE and VERTEX-COVER

- Two illustrations of \leq_{p}.
- Both CLIQUE and VC are in NP, not known to be in P, not known to not be in P.
- However, we can show that they are essentially equivalent: polynomial-time reducible to each other.
- So, although we don't know how hard they are, we know they are (approximately) equally hard.
- E.g., if either is in P, then so is the other.
- Theorem: CLIQUE \leq_{p} VC.
- Theorem: $\mathrm{VC} \leq_{\mathrm{p}}$ CLIQUE.

CLIQUE and VERTEX-COVER

- Theorem: CLIQUE \leq_{p} VC.
- Proof:
- Given input < G, k> for CLIQUE, transform to input $<G^{\prime}, k^{\prime}>$ for VC, in poly time, so that:
$<G, k\rangle \in$ CLIQUE if and only if $\left\langle G^{\prime}, k^{\prime}\right\rangle \in V C$.
- Example:
$\mathrm{G}=(\mathrm{V}, \mathrm{E}), \mathrm{k}=4$

$\mathrm{G}^{\prime}=\left(\mathrm{V}, \mathrm{E}^{\prime}\right), \mathrm{k}^{\prime}=\mathrm{n}-\mathrm{k}=3$

CLIQUE and VERTEX-COVER

- $\langle\mathrm{G}, \mathrm{k}\rangle \in$ CLIQUE if and only if $\left\langle\mathrm{G}^{\prime}, \mathrm{k}^{\prime}\right\rangle \in \mathrm{VC}$.
- Example: $G=(V, E), k=4, G^{\prime}=\left(V, E^{\prime}\right), k^{\prime}=n-k=3$

- $\mathrm{E}^{\prime}=(\mathrm{V} \times \mathrm{V})-\mathrm{E}$, complement of edge set
- G has clique of size 4 (left nodes), G' has a vertex cover of size 7 - 4 = 3 (right nodes).
- All edges between 2 nodes on left are in E, hence not in E^{\prime}, so right nodes cover all edges in E^{\prime}.

CLIQUE and VERTEX-COVER

- Theorem: CLIQUE $\leq_{\mathrm{p}} \mathrm{VC}$.
- Proof:
- Given input < G, k > for CLIQUE, transform to input $\left\langle\mathrm{G}^{\prime}, \mathrm{k}^{\prime}\right\rangle$ for VC , in poly time, so that $\langle\mathrm{G}, \mathrm{k}\rangle \in$ CLIQUE iff $\left\langle\mathrm{G}^{\prime}, \mathrm{k}^{\prime}\right\rangle \in \mathrm{VC}$.
- General transformation: $f(<G, k>)$, where $G=(V, E)$ and $|V|=n$, $=<\mathrm{G}^{\prime}, \mathrm{n}-\mathrm{k}>$, where $\mathrm{G}^{\prime}=\left(\mathrm{V}, \mathrm{E}^{\prime}\right)$ and $\mathrm{E}^{\prime}=(\mathrm{V} \times \mathrm{V})-\mathrm{E}$.
- Transformation is obviously polynomial-time.
- Claim: G has a k-clique iff G' has a size (n-k) vertex cover.
- Proof of claim: Two directions:
\Rightarrow Suppose G has a k-clique, show G^{\prime} has an (n-k)-vc.
- Suppose C is a k-clique in G.
- $\mathrm{V}-\mathrm{C}$ is an $(\mathrm{n}-\mathrm{k})-\mathrm{vc}$ in G^{\prime} :
- Size is obviously right.
- All edges between nodes in C appear in G, so all are missing in G^{\prime}.
- So nodes in V-C cover all edges of G^{\prime}.

CLIQUE and VERTEX-COVER

- Theorem: CLIQUE $\leq{ }_{p} \mathrm{VC}$.
- Proof:
- Given input < G, k > for CLIQUE, transform to input $<\mathrm{G}^{\prime}, \mathrm{k}^{\prime}>$ for $V C$, in poly time, so that $\langle\mathrm{G}, \mathrm{k}\rangle \in$ CLIQUE iff $\left\langle\mathrm{G}^{\prime}, \mathrm{k}^{\prime}\right\rangle \in \mathrm{VC}$.
- General transformation: $\mathrm{f}(<\mathrm{G}, \mathrm{k}>)$, where $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ and $|\mathrm{V}|=\mathrm{n}$, $=<\mathrm{G}^{\prime}, \mathrm{n}-\mathrm{k}>$, where $\mathrm{G}^{\prime}=\left(\mathrm{V}, \mathrm{E}^{\prime}\right)$ and $\mathrm{E}^{\prime}=(\mathrm{V} \times \mathrm{V})-\mathrm{E}$.
- Claim: G has a k-clique iff G^{\prime} has a size ($n-k$) vertex cover.
- Proof of claim: Two directions:
\Leftarrow Suppose G^{\prime} has an ($\mathrm{n}-\mathrm{k}$)-vc, show G has a k-clique.
- Suppose D is an ($n-k$)-vc in G^{\prime}.
- $\mathrm{V}-\mathrm{D}$ is a k -clique in G :
- Size is obviously right.
- All edges between nodes in V-D are missing in G^{\prime}, so must appear in G.
- So V-D is a clique in G.

CLIQUE and VERTEX-COVER

- Theorem: $\mathrm{VC} \leq_{\mathrm{p}}$ CLIQUE.
- Proof: Almost the same.
- Given input < G, k > for VC, transform to input < G', $\mathrm{k}^{\prime}>$ for CLIQUE, in poly time, so that:
$\langle\mathrm{G}, \mathrm{k}\rangle \in \mathrm{VC}$ if and only if $\left\langle\mathrm{G}^{\prime}, \mathrm{k}^{\prime}\right\rangle \in$ CLIQUE.
- Example:

$$
G=(V, E), k=3
$$

CLIQUE and VERTEX-COVER

$\langle\mathrm{G}, \mathrm{k}\rangle \in \mathrm{VC}$ if and only if $\left\langle\mathrm{G}^{\prime}, \mathrm{k}^{\prime}\right\rangle \in$ CLIQUE.

- Example: $G=(V, E), k=3, G^{\prime}=\left(V, E^{\prime}\right), k^{\prime}=4$

- $\mathrm{E}^{\prime}=(\mathrm{V} \times \mathrm{V})-\mathrm{E}$, complement of edge set
- G has a 3-vc (right nodes), G^{\prime} has clique of size $7-3=4$ (left nodes).
- All edges between 2 nodes on left are missing from G, so are in G^{\prime}, so left nodes form a clique in G^{\prime}.

CLIQUE and VERTEX-COVER

- Theorem: $\mathrm{VC} \leq_{\mathrm{p}}$ CLIQUE.
- Proof:
- Given input < G, k > for VC, transform to input < G', $\mathrm{k}^{\prime}>$ for CLIQUE, in poly time, so that $<\mathrm{G}, \mathrm{k}>\in \mathrm{VC}$ iff $<\mathrm{G}^{\prime}$, $k^{\prime}>\in$ CLIQUE.
- General transformation: Same as before. $f(<G, k>)$, where $G=(V, E)$ and $|V|=n$, $=<\mathrm{G}^{\prime}, \mathrm{n}-\mathrm{k}>$, where $\mathrm{G}^{\prime}=\left(\mathrm{V}, \mathrm{E}^{\prime}\right)$ and $\mathrm{E}^{\prime}=(\mathrm{V} \times \mathrm{V})-\mathrm{E}$.
- Claim: G has a $k-v c$ iff G^{\prime} has an ($n-k$)-clique.
- Proof of claim: Similar to before, LTTR.

CLIQUE and VERTEX-COVER

- We have shown:
- Theorem: CLIQUE \leq_{p} VC.
- Theorem: VC \leq_{p} CLIQUE.
- So, they are essentially equivalent.
- Either both CLIQUE and VC are in P or neither is.

NP-Completeness

NP-Completeness

- \leq_{p} allows us to relate problems in NP, saying which allow us to solve which others efficiently.
- Even though we don't know whether all of these problems are in P , we can use \leq_{p} to impose some structure on the class NP:
- $A \rightarrow B$ here means $A \leq_{p} B$.
- Sets in NP - P might not be totally ordered by \leq_{p} : we might have A, B with neither $A \leq_{p} B$ nor $B \leq_{p} A$:

NP-Completeness

- Some languages in NP are hardest, in the sense that every language in NP is \leq_{p}-reducible to them.
- Call these NP-complete.
- Definition: Language B is NP-complete if both of the following hold:
(a) B $\in N P$, and
(b) For any language $A \in N P, A \leq_{p} B$.

- Sometimes, we consider languages that aren't, or might not be, in NP, but to which all NP languages are reducible.
- Call these NP-hard.
- Definition: Language B is NP-hard if, for any language A $\in N P, A \leq_{p} B$.

NP-Completeness

- Today, and next time, we'll:
- Give examples of interesting problems that are NPcomplete, and
- Develop methods for showing NP-completeness.
- Theorem: $\exists \mathrm{B}, \mathrm{B}$ is NP-complete.
- There is at least one NP-complete problem.
- We'll show this later.
- Theorem: If A, B, are NP-complete, then $A \leq_{p} B$.
- Two NP-complete problems are essentially equivalent (up to $\leq_{\text {p }}$).
- Proof: $A \in N P, B$ is NP-hard, so $A \leq_{p} B$ by definition.

NP-Completeness

- Theorem: If some NP-complete language is in P , then $\mathrm{P}=\mathrm{NP}$.
- That is, if a polynomial-time algorithm exists for any NPcomplete problem, then the entire class NP collapses into P.
- Polynomial algorithms immediately arise for all problems in NP.
- Proof:
- Suppose B is NP-complete and $B \in P$.
- Let A be any language in NP; show $A \in P$.
- We know $A \leq_{p} B$ since B is NP-complete.
- Then $A \in P$, since $B \in P$ and "easiness propagates downward".
- Since every A in NP is also in $P, N P \subseteq P$.
- Since $P \subseteq N P$, it follows that $P=N P$.

NP-Completeness

- Theorem: The following are equivalent. 1. $\mathrm{P}=\mathrm{NP}$.

2. Every NP-complete language is in P.
3. Some NP-complete language is in P .

- Proof:
$1 \Rightarrow 2$:
- Assume $\mathrm{P}=\mathrm{NP}$, and suppose that B is NP-complete.
- Then $B \in N P$, so $B \in P$, as needed.
$2 \Rightarrow 3$:
- Immediate because there is at least NP-complete language.
$3 \Rightarrow 1$:
- By the previous theorem.

Beliefs about P vs. NP

- Most theoretical computer scientists believe $\mathrm{P} \neq \mathrm{NP}$.
- Why?
- Many interesting NP-complete problems have been discovered over the years, and many smart people have tried to find fast algorithms; no one has succeeded.
- The problems have arisen in many different settings, including logic, graph theory, number theory, operations research, games and puzzles.
- Entire book devoted to them [Garey, Johnson].
- All these problems are essentially the same since all NPcomplete problems are polynomial-reducible to each other.
- So essentially the same problem has been studied in many different contexts, by different groups of people, with different backgrounds, using different methods.

Beliefs about P vs. NP

- Most theoretical computer scientists believe $P \neq N P$.
- Because many smart people have tried to find fast algorithms and no one has succeeded.
- That doesn't mean $P \neq N P$; this is just some kind of empirical evidence.
- The essence of why NP-complete problems seem hard:
- They have NP structure:

$$
x \in L \text { iff }(\exists \mathrm{c},|\mathrm{c}| \leq \mathrm{p}(|\mathrm{x}|))[\mathrm{V}(\mathrm{x}, \mathrm{c}) \text { accepts }],
$$

where V is poly-time.

- Guess and verify.
- Seems to involve exploring a tree of possible choices, exponential blowup.
- However, no one has yet succeeded in proving that they actually are hard!
- We don't have sharp enough methods.
- So in the meantime, we just show problems are NP-complete.

Satisfiability is NP-Complete

Satisfiability is NP-Complete

- SAT $=\{\langle\phi\rangle \mid \phi$ is a satisfiable Boolean formula $\}$
- Definition: (Boolean formula):
- Variables: $x, x_{1}, x_{2}, \ldots, y, \ldots, z, \ldots$
- Can take on values 1 (true) or 0 (false).
- Literal: A variable or its negated version: $x, \neg x, \neg x_{1}, \ldots$
- Operations: ^ v \neg
- Boolean formula: Constructed from literals using operations, e.g.:

$$
\phi=x \wedge((y \wedge z) \vee(\neg y \wedge \neg z)) \wedge \neg(x \wedge z)
$$

- Definition: (Satisfiability):
- A Boolean formula is satisfiable iff there is an assignment of $0 s$ and $1 s$ to the variables that makes the entire formula evaluate to 1 (true).

Satisfiability is NP-Complete

- SAT $=\{\langle\phi\rangle \mid \phi$ is a satisfiable Boolean formula $\}$
- Boolean formula: Constructed from literals using operations, e.g.:

$$
\phi=x \wedge((y \wedge z) \vee(\neg y \wedge \neg z)) \wedge \neg(x \wedge z)
$$

- A Boolean formula is satisfiable iff there is an assignment of $0 s$ and 1 s to the variables that makes the entire formula evaluate to 1 (true).
- Example: ϕ above
- Satisfiable, using the assignment $x=1, y=0, z=0$.
- So $\phi \in$ SAT.
- Example: $x \wedge((y \wedge z) \vee(\neg y \wedge z)) \wedge \neg(x \wedge z)$
- Not in SAT.
-x must be set to 1 , so z must $=0$.

Satisfiability is NP-Complete

- SAT $=\{\langle\phi\rangle \mid \phi$ is a satisfiable Boolean formula $\}$
- Theorem: SAT is NP-complete.
- Lemma 1: SAT \in NP.
- Lemma 2: SAT is NP-hard.
- Proof of Lemma 1:
- Recall: $L \in N P$ if and only if ($\exists \mathrm{V}$, poly-time verifier) ($\exists \mathrm{p}$, poly)

$$
x \in L \text { iff }(\exists \mathrm{c},|\mathrm{c}| \leq \mathrm{p}(|\mathrm{x}|))[\mathrm{V}(\mathrm{x}, \mathrm{c}) \text { accepts }]
$$

- So, to show SAT \in NP, it's enough to show $(\exists V)(\exists \mathrm{p})$
$\phi \in \operatorname{SAT}$ iff $(\exists \mathrm{c},|\mathrm{c}| \leq \mathrm{p}(|x|))[\mathrm{V}(\phi, \mathrm{c})$ accepts]
- We know: $\phi \in$ SAT iff there is an assignment to the variables such that ϕ with this assignment evaluates to 1 .
- So, let certificate c be the assignment.
- Let verifier V take a formula ϕ and an assignment c and accept exactly if ϕ with c evaluates to true.
- Evaluate ϕ bottom-up, takes poly time.

Satisfiability is NP-Complete

- Lemma 2: SAT is NP-hard.
- Proof of Lemma 2:
- Need to show that, for any $A \in N P, A \leq_{p} S A T$.
- Fix A \in NP.
- Construct a poly-time f such that

$$
w \in A \text { if and only if } f(w) \in S A T \text {. }
$$

$$
\text { A formula, write it as } \phi_{w} \text {. }
$$

- By definition, since $A \in N P$, there is a nondeterministic TM M that decides A in polynomial time.
- Fix polynomial p such that M on input w always halts, on all branches, in time $\leq p(|w|)$; assume $p(|w|) \geq|w|$.
$-w \in A$ if and only if there is an accepting computation history (CH) of M on w.

Satisfiability is NP-Complete

- Lemma 2: SAT is NP-hard.
- Proof, cont'd:
- Need $w \in A$ if and only if $f(w)\left(=\phi_{w}\right) \in$ SAT.
$-\mathrm{w} \in \mathrm{A}$ if and only if there is an accepting CH of M on w .
- So we must construct formula ϕ_{w} to be satisfiable iff there is an accepting CH of M on w .
- Recall definitions of computation history and accepting computation history from Post Correspondence Problem: \# $\mathrm{C}_{0} \# \mathrm{C}_{1} \# \mathrm{C}_{2} \ldots$
- Configurations include tape contents, state, head position.
- We construct ϕ_{w} to describe an accepting CH.
- Let $\mathrm{M}=\left(\mathrm{Q}, \Sigma, \Gamma, \delta, \mathrm{q}_{0}, \mathrm{q}_{\mathrm{ac}}, \mathrm{q}_{\mathrm{rej}}\right)$ as usual.
- Instead of lining up configs in a row as before, arrange in $(p(|w|)+1)$ row $\times(p(|w|)+3)$ column matrix:

Proof that SAT is NP-hard

- ϕ_{w} will be satisfiable iff there is an accepting CH of M on w .
- Let $\mathrm{M}=\left(\mathrm{Q}, \Sigma, \Gamma, \delta, \mathrm{q}_{0}, \mathrm{q}_{\mathrm{acc}}, \mathrm{q}_{\mathrm{rej}}\right)$.
- Arrange configs in $(p(|w|)+1) \times(p(|w|)+3)$ matrix:

```
\# \(q_{0} \quad w_{1} \quad w_{2} \quad w_{3} \quad . . . w_{n}\)
\# ... \#
\# ... \#
\#
\# ...
\#
```

- Successive configs, ending with accepting config.
- Assume WLOG that each computation takes exactly $p(|w|)$ steps, so we use $p(|w|)+1$ rows.
- $p(|w|)+3$ columns: $p(|w|)$ for the interesting portion of the tape, one for head and state, two for endmarkers.

Proof that SAT is NP-hard

- ϕ_{w} is satisfiable iff there is an accepting CH of M on w .
- Entries in the matrix are represented by Boolean variables:
- Define $C=Q \cup \Gamma \cup\{\#\}$, alphabet of possible matrix entries.
- Variable $\mathrm{x}_{\mathrm{i}, \mathrm{j}, \mathrm{c}}$ represents "the entry in position (i, j) is c ".
- Define ϕ_{w} as a formula over these $\mathrm{x}_{\mathrm{i}, \mathrm{j}, \mathrm{c}}$ variables, satisfiable if and only if there is an accepting computation history for w (in matrix form).
- Moreover, an assignment of values to the $\mathrm{x}_{\mathrm{i}, \mathrm{i}, \mathrm{c}}$ variables that satisfies ϕ_{w} will correspond to an encoding of an accepting computation.
- Specifically, $\phi_{\mathrm{w}}=\phi_{\text {cell }} \wedge \phi_{\text {start }} \wedge \phi_{\text {accept }} \wedge \phi_{\text {move }}$, where:
- $\phi_{\text {cell }}$: There is exactly one value in each matrix location.
- $\phi_{\text {start }}$: The first row represents the starting configuration.
- $\phi_{\text {accept }}$: The last row is an accepting configuration.
- $\phi_{\text {move }}$: Successive rows represent allowable moves of M.

$\phi_{\text {cell }}$

- For each position (i,j), write the conjunction of two formulas:
$V_{c \in C} X_{i, j, c}$: Some value appears in position (i,j).
$\wedge_{c, d \in c, c \neq d}\left(\neg x_{i, j, c} \vee \neg x_{i, j, d}\right)$: Position (i,j) doesn't contain two values.
- $\phi_{\text {cell }}$: Conjoin formulas for all positions (i,j).
- Easy to construct the entire formula $\phi_{\text {cell }}$ given w input.
- Construct it in polynomial time.
- Sanity check: Length of formula is polynomial in $|\mathrm{w}|$:
- O((p(|w|) ${ }^{2}$) subformulas, one for each (i,j).
- Length of each subformula depends on $\mathrm{C}, \mathrm{O}\left(|\mathrm{C}|^{2}\right)$.

$\phi_{\text {start }}$

- The right symbols appear in the first row:
\# $q_{0} w_{1} w_{2} w_{3}$... w_{n}-- --...\quad-- \#

$$
\begin{aligned}
\phi_{\text {start }}: x_{1,1, \#} & \wedge x_{1,2, q 0} \wedge x_{1,3, w 1} \wedge x_{1,4, w 2} \wedge \ldots \\
& \wedge x_{1, n+2, w n} \wedge x_{1, n+3,--} \wedge \ldots \\
& \wedge x_{1, p(n)+2,--} \wedge x_{1, p(n)+3, \#}
\end{aligned}
$$

$\phi_{\text {accept }}$

- For each $\mathrm{j}, 2 \leq \mathrm{j} \leq \mathrm{p}(|\mathrm{w}|)+2$, write the formula:

$$
x_{p(|w|)+1, j, q a c c}
$$

- $q_{a c c}$ appears in position j of the last row.
- $\phi_{\text {accept: }}$: Take disjunction (or) of all formulas for all j.
- That is, $\mathrm{q}_{\mathrm{acc}}$ appears in some position of the last row.
- As for PCP, correct moves depend on correct changes to local portions of configurations.
- It's enough to consider 2×3 rectangles:
- If every 2×3 rectangle is "good", i.e., consistent with the transitions, then the entire matrix represents an accepting CH .

a	b	c
a	b	c

- For each position (i,j), $1 \leq i \leq p(|w|), 1 \leq j \leq$ $p(|w|)+1$, write a formula saying that the rectangle with upper left at (i, j) is "good".
- Then conjoin all of these, $\mathrm{O}\left(\mathrm{p}(|\mathrm{w}|)^{2}\right)$ clauses.
- Good tiles for (i,j), for $\mathrm{a}, \mathrm{b}, \mathrm{c}$ in Γ :

$\#$	a	b
$\#$	a	b

a	b	$\#$
a	b	$\#$

- Other good tiles are defined in terms of the nondeterministic transition function δ.
- E.g., if $\delta\left(q_{1}, a\right)$ includes tuple $\left(q_{2}, b, L\right)$, then the following are good:
- Represents the move directly; for any c:
- Head moves left out of the rectangle; for any c, d:
- Head is just to the left of the rectangle; for any c, d:
- Head at right; for any c, d, e:
- And more, for \#, etc.
- Analogously if $\delta\left(q_{1}, a\right)$ includes $\left(q_{2}, b, R\right)$.
- Since M is nondeterministic, $\delta\left(q_{1}, a\right)$ may contain several moves, so include all the tiles.

c	q_{1}	a
q_{2}	c	b

q_{1}	a	c
d	b	c

a	c	d
b	c	d

d	c	q_{1}
d	q_{2}	c

e	d	c
e	d	q_{2}

- The good tiles give partial constraints on the computation.
- When taken together, they give enough constraints so that only a correct CH can satisfy them all.
- The part (conjunct) of $\phi_{\text {move }}$ for (i, j) should say that the rectangle with upper left at (i, j) is good:
- It is simply the disjunction (or), over all allowable tiles, of the subformula:

a1	a2	a3
b1	b2	b3

$$
x_{i, j, a 1} \wedge x_{i, j+1, a 2} \wedge x_{i, j+2, a 3} \wedge x_{i+1, j, b 1} \wedge x_{i+1, j+1, b 2} \wedge x_{i+1, j+2, b 3}
$$

- Thus, $\phi_{\text {move }}$ is the conjunction over all (i,j), of the disjunction over all good tiles, of the formula just above.
- $\phi_{\text {move }}$ is the conjunction over all (i,j), of the disjunction over all good tiles, of the given sixterm conjunctive formula.
- Q: How big is the formula $\phi_{\text {move }}$?
- $\mathrm{O}\left(\mathrm{p}(|\mathrm{w}|)^{2}\right)$ clauses, one for each (i, j) pair.
- Each clause is only constant length, O(1).
- Because machine M yields only a constant number of good tiles.
- And there are only 6 terms for each tile.
- Thus, length of $\phi_{\text {move }}$ is polynomial in $|w|$.
- $\phi_{\mathrm{w}}=\phi_{\text {cell }} \wedge \phi_{\text {start }} \wedge \phi_{\text {accept }} \wedge \phi_{\text {move }}$, length also poly in $|\mathrm{w}|$.
- $\phi_{\mathrm{w}}=\phi_{\text {cell }} \wedge \phi_{\text {start }} \wedge \phi_{\text {accept }} \wedge \phi_{\text {move }}$, length poly in $|\mathrm{w}|$.
- More importantly, can produce ϕ_{w} from w in time that is polynomial in |w|.
- $\mathrm{w} \in \mathrm{A}$ if and only if M has an accepting CH for w if and only if ϕ_{w} is satisfiable.
- Thus, $\mathrm{A} \leq_{p}$ SAT.
- Since A was any language in NP, this proves that SAT is NP-hard.
- Since SAT is in NP and is NP-hard, SAT is NP-complete.

Next time...

- NP-completeness---more examples
- Reading:
- Sipser Sections 7.4-7.5

MIT OpenCourseWare
http://ocw.mit.edu

$6.045 \mathrm{~J} / 18.400 \mathrm{~J}$ Automata, Computability, and Complexity

Spring 2011

For information about citing these materials or our Terms of Use, visit: |http://ocw.mit.edu/terms.

