
6.045: Automata, Computability, and
Complexity (GITCS)

Class 15
Nancy Lynch

Today: More Complexity Theory

• Polynomial-time reducibility, NP-completeness,
and the Satisfiability (SAT) problem

• Topics:
– Introduction (Review and preview)
– Polynomial-time reducibility, ≤p
– Clique ≤p VertexCover and vice versa
– NP-completeness
– SAT is NP-complete

• Reading:
– Sipser Sections 7.4-7.5

• Next:
– Sipser Sections 7.4-7.5

Introduction

Introduction
• P = { L | there is some polynomial-time deterministic Turing

machine that decides L }
• NP = { L | there is some polynomial-time nondeterministic

Turing machine that decides L }
• Alternatively, L ∈ NP if and only if (∃ V, a polynomial-time

verifier) (∃ p, a polynomial) such that:
x ∈ L iff (∃ c, |c| ≤ p(|x|)) [V(x, c) accepts]

• To show that L ∈ NP, we need only exhibit a suitable
verifier V and show that it works (which requires saying
what the certificates are).

• P ⊆ NP, but it’s not known whether P = NP.

certificate

Introduction
• P = { L | ∃ poly-time deterministic TM that decides L }
• NP = { L | ∃ poly-time nondeterministic TM that decides L }
• L ∈ NP if and only if (∃ V, poly-time verifier) (∃ p, poly)

x ∈ L iff (∃ c, |c| ≤ p(|x|)) [V(x, c) accepts]

• Some languages are in NP, but are not known to be in P (and
are not known to not be in P):
– SAT = { < φ > | φ is a satisfiable Boolean formula }
– 3COLOR = { < G > | G is an (undirected) graph whose

vertices can be colored with ≤ 3 colors with no 2 adjacent
vertices colored the same }

– CLIQUE = { < G, k > | G is a graph with a k-clique }
– VERTEX-COVER = { < G, k > | G is a graph having a

vertex cover of size k }

CLIQUE
• CLIQUE = { < G, k > | G is a graph with a k-clique }
• k-clique: k vertices with edges between all pairs in

the clique.
• In NP, not known to be in P, not known to not be in

P.

• 3-cliques: { b, c, d }, { c, d, f }
• Cliques are easy to verify, but may be hard to find.

a

b

c

de

f

CLIQUE
• CLIQUE = { < G, k > | G is a graph with a k-clique }

• Input to the VC problem: < G, 3 >
• Certificate, to show that < G, 3 > ∈ CLIQUE, is { b, c,

d } (or { c, d, f }).
• Polynomial-time verifier can check that { b, c, d } is a

3-clique.

a

b

c

de

f

• VERTEX-COVER = { < G, k > | G is a graph with a
vertex cover of size k }

• Vertex cover of G = (V, E): A subset C of V such
that, for every edge (u,v) in E, either u ∈ C or v ∈ C.
– A set of vertices that “covers” all the edges.

• In NP, not known to be in P, not known to not be in
P.

• 3-vc: { a, b, d }
• Vertex covers are easy to verify, may be hard to find.

a

b

c

de

f

VERTEX-COVER

VERTEX-COVER
• VERTEX-COVER = { < G, k > | G is a graph with a

vertex cover of size k }

• Input to the VC problem: < G, 3 >
• Certificate, to show that < G, 3 > ∈ VC, is { a, b, d }.
• Polynomial-time verifier can check that { a, b, d } is a

3-vertex-cover.

a

b

c

de

f

Introduction
• Languages in NP, not known to be in P, not known to not be in P:

– SAT = { < φ > | φ is a satisfiable Boolean formula }
– 3COLOR = { < G > | G is a graph whose vertices can be colored with ≤

3 colors with no 2 adjacent vertices colored the same }
– CLIQUE = { < G, k > | G is a graph with a k-clique }
– VERTEX-COVER = { < G, k > | G is a graph with a vc of size k }

• There are many problems like these, where some structure
seems hard to find, but is easy to verify.

• Q: Are these easy (in P) or hard (not in P)?
• Not yet known. We don’t yet have the math tools to answer

this question.
• We can say something useful to reduce the apparent diversity

of such problems---that many such problems are “reducible”
to each other.

• So in a sense, they are the “same problem”.

Polynomial-Time Reducibility

Polynomial-Time Reducibility
• Definition: A ⊆ Σ* is polynomial-time reducible to

B ⊆ Σ*, A ≤p B, provided there is a polynomial-time
computable function f: Σ* → Σ* such that:

(∀w) [w ∈ A if and only if f(x) ∈ B]

• Extends to different alphabets Σ1 and Σ2.
• Same as mapping reducibility, ≤m , but with a

polynomial-time restriction.

A

Σ*

B

Σ*
f

f

Polynomial-Time Reducibility
• Definition: A ⊆ Σ* is polynomial-time reducible to B ⊆ Σ*,

A ≤p B, provided there is a polynomial-time computable
function f: Σ* → Σ* such that:

(∀w) [w ∈ A if and only if f(x) ∈ B]
• Theorem: (Transitivity of ≤p)

If A ≤p B and B ≤p C then A ≤p C.
• Proof:

– Let f be a polynomial-time reducibility function from A to B.
– Let g be a polynomial-time reducibility function from B to C.

A

Σ*

B

Σ*f
B

Σ*

C

Σ*g

Polynomial-Time Reducibility
• Definition: A ≤p B, provided there is a polynomial-time

computable function f: Σ* → Σ* such that:
(∀w) [w ∈ A if and only if f(w) ∈ B]

• Theorem: If A ≤p B and B ≤p C then A ≤p C.
• Proof:

– Let f be a polynomial-time reducibility function from A to B.
– Let g be a polynomial-time reducibility function from B to C.

– Define h(w) = g(f(w)).
– Then w ∈ A if and only if f(w) ∈ B if and only if g(f(w)) ∈C.
– h is poly-time computable:

A

Σ*

B

Σ*
f

B

Σ*

C

Σ*
g

h(w)

Polynomial-Time Reducibility
• Theorem: If A ≤p B and B ≤p C then A ≤p C.
• Proof:

– Let f be a polynomial-time reducibility function from A to B.
– Let g be a polynomial-time reducibility function from B to C.

– Define h(w) = g(f(w)).
– h is poly-time computable:

• |f(w)| is bounded by a polynomial in |w|.
• Time to compute g(f(w)) is bounded by a polynomial in |f(w)|,

and therefore by a polynomial in |w|.
• Uses the fact that substituting one polynomial for the variable in

another yields yet another polynomial.

A

Σ*

B

Σ*
f

B

Σ*

C

Σ*
g

Polynomial-Time Reducibility
• Definition: A ≤p B, provided there is a polynomial-time

computable function f: Σ* → Σ* such that:
(∀w) [w ∈ A if and only if f(x) ∈ B]

• Theorem: If A ≤p B and B ∈ P then A ∈ P.
• Proof:

– Let f be a polynomial-time reducibility function from A to B.
– Let M be a polynomial-time decider for B.
– To decide whether w ∈A:

• Compute x = f(w).
• Run M to decide whether x ∈ B, and accept / reject accordingly.

– Polynomial time.

• Corollary: If A ≤p B and A is not in P then B is not in P.
• Easiness propagates downward, hardness propagates

upward.

Polynomial-Time Reducibility
• Can use ≤p to relate the difficulty of two problems:
• Theorem: If A ≤p B and B ≤p A then either both A and B are

in P or neither is.
• Also, for problems in NP:
• Theorem: If A ≤p B and B ∈ NP then A ∈ NP.
• Proof:

– Let f be a polynomial-time reducibility function from A to B.
– Let M be a polynomial-time nondeterministic TM that decides B.

• Poly-bounded on all branches.
• Accepts on at least one branch iff and only if input string is in B.

– NTM M′ to decide membership in A:
– On input w:

• Compute x = f(w); |x| is bounded by a polynomial in |w|.
• Run M on x and accept/reject (on each branch) if M does.

– Polynomial time-bounded NTM.

Polynomial-Time Reducibility
• Theorem: If A ≤p B and B ∈ NP then A ∈ NP.
• Proof:

– Let f be a polynomial-time reducibility function from A to B.
– Let M be a polynomial-time nondeterministic TM that decides B.
– NTM M′ to decide membership in A:
– On input w:

• Compute x = f(w); |x| is bounded by a polynomial in |w|.
• Run M on x and accept/reject (on each branch) if M does.

– Polynomial time-bounded NTM.
– Decides membership in A:

• M′ has an accepting branch on input w
iff M has an accepting branch on f(w), by definition of M′,
iff f(w) ∈ B, since M decides B,
iff w ∈ A, since A ≤p B using f.

– So M′ is a poly-time NTM that decides A, A ∈ NP.

Polynomial-Time Reducibility
• Theorem: If A ≤p B and B ∈ NP then A ∈ NP.
• Corollary: If A ≤p B and A is not in NP, then B is

not in NP.

Polynomial-Time Reducibility
• A technical result (curiosity):
• Theorem: If A ∈ P and B is any nontrivial language

(meaning not ∅, not Σ*), then A ≤p B.
• Proof:

– Suppose A ∈ P.
– Suppose B is a nontrivial language; pick b0 ∈ B, b1 ∈ Bc.
– Define f(w) = b0 if w ∈ A, b1 if w is not in A.
– f is polynomial-time computable; why?
– Because A is polynomial time decidable.
– Clearly w ∈ A if and only if f(w) ∈ B.
– So A ≤p B.

• Trivial reduction: All the work is done by the decider for A,
not by the reducibility and the decider for B.

CLIQUE and VERTEX-COVER

CLIQUE and VERTEX-COVER
• Two illustrations of ≤p.
• Both CLIQUE and VC are in NP, not known to be

in P, not known to not be in P.
• However, we can show that they are essentially

equivalent: polynomial-time reducible to each
other.

• So, although we don’t know how hard they are, we
know they are (approximately) equally hard.
– E.g., if either is in P, then so is the other.

• Theorem: CLIQUE ≤p VC.
• Theorem: VC ≤p CLIQUE.

CLIQUE and VERTEX-COVER
• Theorem: CLIQUE ≤p VC.
• Proof:

– Given input < G, k > for CLIQUE, transform to input
< G′, k′ > for VC, in poly time, so that:
< G, k > ∈ CLIQUE if and only if < G′, k′ > ∈ VC.

• Example:
G = (V, E), k = 4 G′ = (V, E′), k′ = n – k = 3

Clique of size k = 4

Other n – k = 3
vertices

k vertices

Size n – k
Vertex cover

CLIQUE and VERTEX-COVER
• < G, k > ∈ CLIQUE if and only if < G′, k′ > ∈ VC.
• Example: G = (V, E), k = 4, G′ = (V, E′), k′ = n – k = 3

Clique of size k = 4

Other n – k = 3
vertices

• E′ = (V × V) – E, complement of edge set
• G has clique of size 4 (left nodes), G′ has a vertex cover of

size 7 – 4 = 3 (right nodes).
• All edges between 2 nodes on left are in E, hence not in E′,

so right nodes cover all edges in E′.

k vertices

Size n – k
Vertex cover

CLIQUE and VERTEX-COVER
• Theorem: CLIQUE ≤p VC.
• Proof:

– Given input < G, k > for CLIQUE, transform to input < G′, k′ > for
VC, in poly time, so that < G, k > ∈ CLIQUE iff < G′, k′ > ∈ VC.

– General transformation: f(< G, k >), where G = (V, E) and |V| = n,
= < G′, n-k >, where G′ = (V, E′) and E′ = (V × V) – E.

– Transformation is obviously polynomial-time.
– Claim: G has a k-clique iff G′ has a size (n-k) vertex cover.
– Proof of claim: Two directions:

⇒ Suppose G has a k-clique, show G′ has an (n-k)-vc.
• Suppose C is a k-clique in G.
• V – C is an (n-k)-vc in G′:

– Size is obviously right.
– All edges between nodes in C appear in G, so all are

missing in G′.
– So nodes in V-C cover all edges of G′.

CLIQUE and VERTEX-COVER
• Theorem: CLIQUE ≤p VC.
• Proof:

– Given input < G, k > for CLIQUE, transform to input < G′, k′ > for
VC, in poly time, so that < G, k > ∈ CLIQUE iff < G′, k′ > ∈ VC.

– General transformation: f(< G, k >), where G = (V, E) and |V| = n,
= < G′, n-k >, where G′ = (V, E′) and E′ = (V × V) – E.

– Claim: G has a k-clique iff G′ has a size (n-k) vertex cover.
– Proof of claim: Two directions:

⇐ Suppose G′ has an (n-k)-vc, show G has a k-clique.
• Suppose D is an (n-k)-vc in G′.
• V – D is a k-clique in G:

– Size is obviously right.
– All edges between nodes in V-D are missing in G′, so must

appear in G.
– So V-D is a clique in G.

CLIQUE and VERTEX-COVER
• Theorem: VC ≤p CLIQUE.
• Proof: Almost the same.

– Given input < G, k > for VC, transform to input < G′, k′ >
for CLIQUE, in poly time, so that:
< G, k > ∈ VC if and only if < G′, k′ > ∈ CLIQUE.

• Example:
G = (V, E), k = 3 G′ = (V, E′), k′ = 4

4-clique
3-VC

CLIQUE and VERTEX-COVER
< G, k > ∈ VC if and only if < G′, k′ > ∈ CLIQUE.

• Example: G = (V, E), k = 3, G′ = (V, E′), k′ = 4

• E′ = (V × V) – E, complement of edge set
• G has a 3-vc (right nodes), G′ has clique of size 7 – 3 = 4

(left nodes).
• All edges between 2 nodes on left are missing from G, so

are in G′, so left nodes form a clique in G′.

4-clique
3-VC

CLIQUE and VERTEX-COVER
• Theorem: VC ≤p CLIQUE.
• Proof:

– Given input < G, k > for VC, transform to input < G′, k′ >
for CLIQUE, in poly time, so that < G, k > ∈ VC iff < G′,
k′ > ∈ CLIQUE.

– General transformation: Same as before.
f(< G, k >), where G = (V, E) and |V| = n,

= < G′, n-k >, where G′ = (V, E′) and E′ = (V × V) – E.
– Claim: G has a k-vc iff G′ has an (n-k)-clique.
– Proof of claim: Similar to before, LTTR.

CLIQUE and VERTEX-COVER
• We have shown:
• Theorem: CLIQUE ≤p VC.
• Theorem: VC ≤p CLIQUE.
• So, they are essentially equivalent.
• Either both CLIQUE and VC are in P or

neither is.

NP-Completeness

NP-Completeness
• ≤p allows us to relate problems in NP, saying

which allow us to solve which others efficiently.
• Even though we don’t know whether all of these

problems are in P, we can use ≤p to impose some
structure on the class NP: NP

P

• A → B here means A ≤p B.

• Sets in NP – P might not be
totally ordered by ≤p: we
might have A, B with neither
A ≤p B nor B ≤p A:

NP

P

A B

NP-Completeness
• Some languages in NP are hardest, in the sense that

every language in NP is ≤p-reducible to them.
• Call these NP-complete.
• Definition: Language B is NP-complete if both

of the following hold:
(a) B ∈ NP, and
(b) For any language A ∈ NP, A ≤p B.

• Sometimes, we consider languages that aren’t, or might
not be, in NP, but to which all NP languages are reducible.

• Call these NP-hard.
• Definition: Language B is NP-hard if, for any language A

∈ NP, A ≤p B.

NP

P

NP-Completeness
• Today, and next time, we’ll:

– Give examples of interesting problems that are NP-
complete, and

– Develop methods for showing NP-completeness.

• Theorem: ∃B, B is NP-complete.
– There is at least one NP-complete problem.
– We’ll show this later.

• Theorem: If A, B, are NP-complete, then A ≤p B.
– Two NP-complete problems are essentially equivalent

(up to ≤p).
• Proof: A ∈ NP, B is NP-hard, so A ≤p B by

definition.

NP-Completeness
• Theorem: If some NP-complete language is in P,

then P = NP.
– That is, if a polynomial-time algorithm exists for any NP-

complete problem, then the entire class NP collapses
into P.

– Polynomial algorithms immediately arise for all
problems in NP.

• Proof:
– Suppose B is NP-complete and B ∈ P.
– Let A be any language in NP; show A ∈ P.
– We know A ≤p B since B is NP-complete.
– Then A ∈ P, since B ∈ P and “easiness propagates

downward”.
– Since every A in NP is also in P, NP ⊆ P.
– Since P ⊆ NP, it follows that P = NP.

NP-Completeness
• Theorem: The following are equivalent.

1. P = NP.
2. Every NP-complete language is in P.
3. Some NP-complete language is in P.

• Proof:
1 ⇒ 2:

• Assume P = NP, and suppose that B is NP-complete.
• Then B ∈ NP, so B ∈ P, as needed.

2 ⇒ 3:
• Immediate because there is at least NP-complete language.

3 ⇒ 1:
• By the previous theorem.

Beliefs about P vs. NP
• Most theoretical computer scientists believe P ≠ NP.
• Why?
• Many interesting NP-complete problems have been

discovered over the years, and many smart people have
tried to find fast algorithms; no one has succeeded.

• The problems have arisen in many different settings,
including logic, graph theory, number theory, operations
research, games and puzzles.

• Entire book devoted to them [Garey, Johnson].
• All these problems are essentially the same since all NP-

complete problems are polynomial-reducible to each other.
• So essentially the same problem has been studied in many

different contexts, by different groups of people, with
different backgrounds, using different methods.

Beliefs about P vs. NP
• Most theoretical computer scientists believe P ≠ NP.
• Because many smart people have tried to find fast

algorithms and no one has succeeded.
• That doesn’t mean P ≠ NP; this is just some kind of

empirical evidence.
• The essence of why NP-complete problems seem hard:

– They have NP structure:
x ∈ L iff (∃ c, |c| ≤ p(|x|)) [V(x, c) accepts],

where V is poly-time.
– Guess and verify.
– Seems to involve exploring a tree of possible choices, exponential

blowup.
• However, no one has yet succeeded in proving that they

actually are hard!
– We don’t have sharp enough methods.
– So in the meantime, we just show problems are NP-complete.

Satisfiability is NP-Complete

Satisfiability is NP-Complete
• SAT = { < φ > | φ is a satisfiable Boolean formula }
• Definition: (Boolean formula):

– Variables: x, x1, x2, …, y,…, z,…
• Can take on values 1 (true) or 0 (false).

– Literal: A variable or its negated version: x, ¬x, ¬x1,…
– Operations: ∧ ∨ ¬
– Boolean formula: Constructed from literals using

operations, e.g.:
φ = x ∧ ((y ∧ z) ∨ (¬y ∧ ¬z)) ∧ ¬(x ∧ z)

• Definition: (Satisfiability):
– A Boolean formula is satisfiable iff there is an

assignment of 0s and 1s to the variables that makes the
entire formula evaluate to 1 (true).

Satisfiability is NP-Complete
• SAT = { < φ > | φ is a satisfiable Boolean formula }
• Boolean formula: Constructed from literals using

operations, e.g.:
φ = x ∧ ((y ∧ z) ∨ (¬y ∧ ¬z)) ∧ ¬(x ∧ z)

• A Boolean formula is satisfiable iff there is an
assignment of 0s and 1s to the variables that
makes the entire formula evaluate to 1 (true).

• Example: φ above
– Satisfiable, using the assignment x = 1, y = 0, z = 0.
– So φ ∈ SAT.

• Example: x ∧ ((y ∧ z) ∨ (¬y ∧ z)) ∧ ¬(x ∧ z)
– Not in SAT.
– x must be set to 1, so z must = 0.

Satisfiability is NP-Complete
• SAT = { < φ > | φ is a satisfiable Boolean formula }
• Theorem: SAT is NP-complete.
• Lemma 1: SAT ∈ NP.
• Lemma 2: SAT is NP-hard.
• Proof of Lemma 1:

– Recall: L ∈ NP if and only if (∃ V, poly-time verifier) (∃ p, poly)
x ∈ L iff (∃ c, |c| ≤ p(|x|)) [V(x, c) accepts]

– So, to show SAT ∈ NP, it’s enough to show (∃ V) (∃ p)
φ ∈ SAT iff (∃ c, |c| ≤ p(|x|)) [V(φ, c) accepts]

– We know: φ ∈ SAT iff there is an assignment to the variables such
that φ with this assignment evaluates to 1.

– So, let certificate c be the assignment.
– Let verifier V take a formula φ and an assignment c and accept

exactly if φ with c evaluates to true.
– Evaluate φ bottom-up, takes poly time.

Satisfiability is NP-Complete
• Lemma 2: SAT is NP-hard.
• Proof of Lemma 2:

– Need to show that, for any A ∈ NP, A ≤p SAT.
– Fix A ∈ NP.
– Construct a poly-time f such that

w ∈ A if and only if f(w) ∈ SAT.

– By definition, since A ∈ NP, there is a nondeterministic
TM M that decides A in polynomial time.

– Fix polynomial p such that M on input w always halts, on
all branches, in time ≤ p(|w|); assume p(|w|) ≥ |w|.

– w ∈ A if and only if there is an accepting computation
history (CH) of M on w.

A formula, write it as φw.

Satisfiability is NP-Complete
• Lemma 2: SAT is NP-hard.
• Proof, cont’d:

– Need w ∈ A if and only if f(w) (= φw) ∈ SAT.
– w ∈ A if and only if there is an accepting CH of M on w.
– So we must construct formula φw to be satisfiable iff there

is an accepting CH of M on w.
– Recall definitions of computation history and accepting

computation history from Post Correspondence Problem:
C0 # C1 # C2 …

• Configurations include tape contents, state, head position.
– We construct φw to describe an accepting CH.
– Let M = (Q, Σ, Γ, δ, q0, qacc, qrej) as usual.
– Instead of lining up configs in a row as before, arrange in

(p(|w|) + 1) row × (p(|w|) + 3) column matrix:

Proof that SAT is NP-hard
• φw will be satisfiable iff there is an accepting CH of M on w.
• Let M = (Q, Σ, Γ, δ, q0, qacc, qrej).
• Arrange configs in (p(|w|) + 1) × (p(|w|) + 3) matrix:

q0 w1 w2 w3 … wn -- -- … --
…
…

…
• Successive configs, ending with accepting config.
• Assume WLOG that each computation takes exactly p(|w|)

steps, so we use p(|w|) + 1 rows.
• p(|w|) + 3 columns: p(|w|) for the interesting portion of the

tape, one for head and state, two for endmarkers.

Proof that SAT is NP-hard
• φw is satisfiable iff there is an accepting CH of M on w.
• Entries in the matrix are represented by Boolean variables:

– Define C = Q ∪ Γ ∪ { # }, alphabet of possible matrix entries.
– Variable xi,j,c represents “the entry in position (i, j) is c”.

• Define φw as a formula over these xi,j,c variables, satisfiable
if and only if there is an accepting computation history for w
(in matrix form).

• Moreover, an assignment of values to the xi,j,c variables that
satisfies φw will correspond to an encoding of an accepting
computation.

• Specifically, φw = φcell ∧ φstart ∧ φaccept ∧ φmove , where:
– φcell : There is exactly one value in each matrix location.
– φstart : The first row represents the starting configuration.
– φaccept : The last row is an accepting configuration.
– φmove : Successive rows represent allowable moves of M.

φcell

• For each position (i,j), write the conjunction of two formulas:

∨c ∈ C xi,j,c : Some value appears in position (i,j).

∧c, d ∈ C, c ≠ d (¬xi,j,c ∨ ¬xi,j,d): Position (i,j) doesn’t contain
two values.

• φcell: Conjoin formulas for all positions (i,j).

• Easy to construct the entire formula φcell given w input.
• Construct it in polynomial time.
• Sanity check: Length of formula is polynomial in |w|:

– O((p(|w|)2) subformulas, one for each (i,j).
– Length of each subformula depends on C, O(|C|2).

φstart

• The right symbols appear in the first row:
q0 w1 w2 w3 … wn -- -- … --

φstart: x1,1,# ∧ x1,2,q0 ∧ x1,3,w1 ∧ x1,4,w2 ∧ …
∧ x1,n+2,wn ∧ x1,n+3,-- ∧ …
∧ x1,p(n)+2,-- ∧ x1,p(n)+3,#

φaccept

• For each j, 2 ≤ j≤ p(|w|) + 2, write the formula:

xp(|w|)+1,j,qacc

• qacc appears in position j of the last row.
• φaccept: Take disjunction (or) of all formulas for all j.
• That is, qacc appears in some position of the last

row.

φmove

• As for PCP, correct moves depend on
correct changes to local portions of
configurations.

• It’s enough to consider 2 × 3 rectangles:
• If every 2 × 3 rectangle is “good”, i.e.,

consistent with the transitions, then the
entire matrix represents an accepting CH.

• For each position (i,j), 1 ≤ i ≤ p(|w|), 1 ≤ j ≤
p(|w|)+1, write a formula saying that the
rectangle with upper left at (i,j) is “good”.

• Then conjoin all of these, O(p(|w|)2) clauses.
• Good tiles for (i,j), for a, b, c in Γ:

a

a b c

cb

#

a b

ba

a

a b #

#b

φmove

• Other good tiles are defined in terms of the
nondeterministic transition function δ.

• E.g., if δ(q1, a) includes tuple (q2, b, L), then
the following are good:
– Represents the move directly; for any c:
– Head moves left out of the rectangle; for any c, d:
– Head is just to the left of the rectangle; for any c, d:
– Head at right; for any c, d, e:
– And more, for #, etc.

• Analogously if δ(q1, a) includes (q2, b, R).
• Since M is nondeterministic, δ(q1, a) may

contain several moves, so include all the
tiles.

c

q2 c b

aq1

q1

d b c

ca

a

b c d

dc

d

d q2 c

q1c

e

e d q2

cd

• The good tiles give partial constraints on the computation.
• When taken together, they give enough constraints so that

only a correct CH can satisfy them all.
• The part (conjunct) of φmove for (i,j) should say that the

rectangle with upper left at (i,j) is good:
• It is simply the disjunction (or), over all allowable tiles, of

the subformula:

xi,j,a1 ∧ xi,j+1,a2 ∧ xi,j+2,a3 ∧ xi+1,j,b1 ∧ xi+1,j+1,b2 ∧ xi+1,j+2,b3

• Thus, φmove is the conjunction over all (i,j), of the
disjunction over all good tiles, of the formula just above.

φmove

a1

b1 b2 b3

a3a2

• φmove is the conjunction over all (i,j), of the
disjunction over all good tiles, of the given six-
term conjunctive formula.

• Q: How big is the formula φmove?
• O(p(|w|)2) clauses, one for each (i,j) pair.
• Each clause is only constant length, O(1).

– Because machine M yields only a constant number of
good tiles.

– And there are only 6 terms for each tile.
• Thus, length of φmove is polynomial in |w|.
• φw = φcell ∧ φstart ∧ φaccept ∧ φmove , length also poly in |w|.

φmove

• φw = φcell ∧ φstart ∧ φaccept ∧ φmove , length poly in |w|.
• More importantly, can produce φw from w in time that is

polynomial in |w|.
• w ∈ A if and only if M has an accepting CH for w if and

only if φw is satisfiable.
• Thus, A ≤p SAT.
• Since A was any language in NP, this proves that SAT is

NP-hard.
• Since SAT is in NP and is NP-hard, SAT is NP-complete.

φmove

Next time…

• NP-completeness---more examples
• Reading:

– Sipser Sections 7.4-7.5

MIT OpenCourseWare
http://ocw.mit.edu

6.045J / 18.400J Automata, Computability, and Complexity
Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

	6.045: Automata, Computability, and Complexity (GITCS)
	Today: More Complexity Theory
	Introduction
	Introduction
	Introduction
	CLIQUE
	CLIQUE
	VERTEX-COVER
	VERTEX-COVER
	Introduction
	Polynomial-Time Reducibility
	Polynomial-Time Reducibility
	Polynomial-Time Reducibility
	Polynomial-Time Reducibility
	Polynomial-Time Reducibility
	Polynomial-Time Reducibility
	Polynomial-Time Reducibility
	Polynomial-Time Reducibility
	Polynomial-Time Reducibility
	Polynomial-Time Reducibility
	CLIQUE and VERTEX-COVER
	CLIQUE and VERTEX-COVER
	CLIQUE and VERTEX-COVER
	CLIQUE and VERTEX-COVER
	CLIQUE and VERTEX-COVER
	CLIQUE and VERTEX-COVER
	CLIQUE and VERTEX-COVER
	CLIQUE and VERTEX-COVER
	CLIQUE and VERTEX-COVER
	CLIQUE and VERTEX-COVER
	NP-Completeness
	NP-Completeness
	NP-Completeness
	NP-Completeness
	NP-Completeness
	NP-Completeness
	Beliefs about P vs. NP
	Beliefs about P vs. NP
	Satisfiability is NP-Complete
	Satisfiability is NP-Complete
	Satisfiability is NP-Complete
	Satisfiability is NP-Complete
	Satisfiability is NP-Complete
	Satisfiability is NP-Complete
	Proof that SAT is NP-hard
	Proof that SAT is NP-hard
	cell
	start
	accept
	move
	move
	move
	move
	move
	Next time…

