6.045: Automata, Computability, and Complexity
 Or, GITCS

Class 12
Nancy Lynch

Today: Complexity Theory

- First part of the course: Basic models of computation
- Circuits, decision trees
- DFAs, NFAs:
- Restricted notion of computation: no auxiliary memory, just one pass over input.
- Yields restricted class of languages: regular languages.
- Second part: Computability
- Very general notion of computation.
- Machine models like Turing machines, or programs in general (idealized) programming languages.
- Unlimited storage, multiple passes over input, compute arbitrarily long, possibly never halt.
- Yields large language classes: Turing-recognizable = enumerable, and Turing-decidable.
- Third part: Complexity theory

Complexity Theory

- First part of the course: Basic models of computation
- Second part: Computability
- Third part: Complexity theory
- A middle ground.
- Restrict the general TM model by limiting its use of resources:
- Computing time (number of steps).
- Space = storage (number of tape squares used).
- Leads to interesting subclasses of the Turing-decidable languages, based on specific bounds on amounts of resources used.
- Compare:
- Computability theory answers the question "What languages are computable (at all)?"
- Complexity theory answers "What languages are computable with particular restrictions on amount of resources?"

Complexity Theory

- Topics
- Examples of time complexity analysis (informal).
- Asymptotic function notation: $\mathrm{O}, \mathrm{o}, \Omega, \Theta$
- Time complexity classes
- P, polynomial time
- Languages not in P
- Hierarchy theorems
- Reading:
- Sipser, Sections 7.1, 7.2, and a bit from 9.1.
- Next:
- Midterm, then Section 7.3 (after the break).

Examples of time complexity analysis

Examples of time complexity analysis

- Consider a basic 1-tape Turing machine M that decides membership in the language $L=\left\{0^{k} 1^{k} \mid k \geq 0\right\}$:
- M first checks that its input is in $0 * 1 *$, using one left-to-right pass.
- Returns to the beginning (left).
- Then does repeated passes, each time crossing off one 0 and one 1, until it runs out of at least one of them.
- If it runs out of both on the same pass, accepts, else rejects.
- Q: How much time until M halts?
- Depends on the particular input.
- Example: 0111... 1110 (length n)
- Approximately n steps to reject---not in $0 * 1 *$,
- Example: 00...011... 1 ($\mathrm{n} / 20 \mathrm{~s}$ and $\mathrm{n} / 2$ 1s)
- Approximately (at most) $2 n+(n / 2) 2 n=2 n+n^{2}$ steps to accept.

Time complexity analysis

- $L(M)=\left\{0^{k} 1^{\mathrm{k}} \mid k \geq 0\right\}$.
- Time until M halts depends on the particular input.
- 0111... 1110 (length n)
- Approximately n steps to reject---not in $0 * 1$ *,
- 00...011... ($\mathrm{n} / 20 \mathrm{~s}$ and $\mathrm{n} / 2$ 1s)
- Approximately (at most) $2 n+n^{2}$ steps to accept.
- It's too complicated to determine exactly how many steps are required for every input.
- So instead, we:
- Get a close upper bound, not an exact step count.
- Express the bound as a function of the input length n, thus grouping together all inputs of the same length and considering the max.
- Often ignore constant factors and low-order terms.
- So, we describe the time complexity of M as $O\left(n^{2}\right)$.
- At most some constant times n^{2}.

Time complexity analysis

- $L(M)=\left\{0^{k} 1^{\mathrm{k}} \mid \mathrm{k} \geq 0\right\}$.
- Time complexity of machine $\mathrm{M}=\mathrm{O}\left(\mathrm{n}^{2}\right)$.
- Q: Can we do better with a multitape machine?
- Yes, with 2 tapes:
- After checking 0*1*, the machine copies the 0 s to the second tape.
- Then moves 2 heads together, one scanning the 0s on the second tape and one scanning the 1 s on the first tape.
- Check that all the symbols match.
- Time O(n), proportional to n.

Time complexity analysis

- $L(M)=\left\{0^{k} 1^{k} \mid k \geq 0\right\}$.
- 1-tape machine: $O\left(n^{2}\right)$, 2-tape machine: $O(n)$.
- Q:Can we beat $\mathrm{O}\left(\mathrm{n}^{2}\right)$ with a 1-tape machine?
- Yes, can get O(n log n):
- First check 0*1*, as before, $O(n)$ steps.
- Then perform marking phases, as long as some unmarked 0 and some unmarked 1 remain.
- In each marking phase:
- Scan to see whether \# of unmarked $0 \mathrm{~s} \equiv$ \# of unmarked 1s, mod 2 .
- That is, see whether they have the same parity.
- If not, then reject, else continue.
- Scan again, marking every other 0 starting with the first and every other 1 starting with the first.
- After all phases are complete:
- If just Os or just 1s remain, then reject
- If no unmarked symbols remain, then accept.

Time complexity analysis

- O(n log n) algorithm:
- Check 0*1*.
- Perform marking phases, as long as some unmarked 0 and some unmarked 1 remain.
- In each marking phase:
- Scan to see if \# of unmarked $0 \mathrm{~s} \equiv \#$ of unmarked 1 s , mod 2 ; if not, then reject, else continue.
- Scan again, marking every other 0 starting with the first and every other 1 starting with the first.
- If just 0s or just 1s remain, then reject, else accept.
- Example: 00...011... 1 (25 0s and 25 1s)
- Correct form, 0*1*.
- Phase 1: Same parity (odd), marking leaves 12 0s and 12 1s.
- Phase 2: Same parity (even), marking leaves 6, 6.
- Phase 3: Same parity (even), marking leaves 3, 3.
- Phase 4: Same parity (odd), marking leaves 1,1.
- Phase 5: Same parity (odd), marking leaves 0,0
- Accept

Time complexity analysis

- Example: 00...011... 1 (25 0s and 25 1s)
- Correct form, 0*1*.
- Phase 1: Same parity (odd), marking leaves 12 0s and 12 1s.
- Phase 2: Same parity (even), marking leaves 6, 6.
- Phase 3: Same parity (even), marking leaves 3, 3.
- Phase 4: Same parity (odd), marking leaves 1,1.
- Phase 5: Same parity (odd), marking leaves 0,0
- Accept
- Odd parity leads to remainder 1 on division by 2, even parity leads to remainder 0.
- Can read off odd-even parity designations to get binary representations of the numbers, starting with final phase for high-order bit:
- 5: odd; 4: odd; 3: even; 2: even; 1: odd
- Yields 1100 1, binary representation of 25
- If the algorithm accepts, it means the 2 numbers have the same binary representation, so they are equal.

Time complexity analysis

- Example: 00...011... 1 (17 0s and 25 1s)
- Correct form, 0*1*.
- Phase 1: Same parity (odd), marking leaves 8 0s and 12 1s.
- Phase 2: Same parity (even), marking leaves 4, 6.
- Phase 3: Same parity (even), marking leaves 2, 3.
- Phase 4: Different parity, reject
- Don't complete this, so don't generate the complete binary representation of either number.

Time complexity analysis

- Algorithm
- Check 0*1*.
- Perform marking phases, as long as some unmarked 0 and some unmarked 1 remain.
- In each marking phase:
- Scan to see if \# of unmarked 0 s \equiv \# of unmarked 1 s, mod 2 ; if not, then reject, else continue.
- Scan again, marking every other 0 starting with the first and every other 1 starting with the first.
- If just 0s or just 1s remain, then reject, else accept.
- Complexity analysis:
- Number of phases is $\mathrm{O}\left(\log _{2} \mathrm{n}\right)$, since we (approximately) halve the number of unmarked $0 s$ and unmarked 1 s at each phase.
- Time for each phase: O(n).
- Total: O(n log n).
- This analysis is informal; now define O, etc., more carefully and then revisit the example.

Asymptotic function notation: O, $, \Omega, \Theta$

Asymptotic function notation

- Definition: O (big-O)
- Let f, g be two functions: $\mathrm{N} \rightarrow \mathrm{R}^{\geq 0}$.
- We write $f(n)=O(g(n))$, and say " $f(n)$ is big-O of $g(n)$ " if the following holds:
- There is a positive real c, and a positive integer n_{0}, such that $f(n) \leq c g(n)$ for every $n \geq n_{0}$.
- That is, $f(n)$ is bounded from above by a constant times $g(n)$, for all sufficiently large n.
- Often used for complexity upper bounds.
- Example: $\mathrm{n}+2=\mathrm{O}(\mathrm{n})$; can use $\mathrm{c}=2, \mathrm{n}_{0}=2$.
- Example: $3 n^{2}+n=O\left(n^{2}\right)$; can use $c=4, n_{0}=1$.
- Example: Any degree-k polynomial with nonnegative coefficients, $p(n)=a_{k} n^{k}+a_{k-1} n^{k-1}+$ $\ldots+a_{1} n+a_{0}=O\left(n^{k}\right)$
- Thus, $3 n^{4}+6 n^{2}+17=O\left(n^{4}\right)$.

More big-O examples

- Definition:
- Let $\mathrm{f}, \mathrm{g}: \mathrm{N} \rightarrow \mathrm{R}^{\geq 0}$
$-f(n)=O(g(n))$ means that there is a positive real c, and a positive integer n_{0}, such that $\mathrm{f}(\mathrm{n}) \leq \mathrm{cg}(\mathrm{n})$ for every $\mathrm{n} \geq$ n_{0}.
- Example: $3 n^{4}=O\left(n^{7}\right)$, though this is not the tightest possible statement.
- Example: $3 n^{7} \neq O\left(n^{4}\right)$.
- Example: $\log _{2}(n)=O\left(\log _{e}(n)\right) ; \log _{a}(n)=O\left(\log _{b}(n)\right)$ for any a and b
- Because logs to different bases differ by a constant
- Example: $2^{3+n}=O\left(2^{n}\right)$, because $2^{3+n}=8 \times 2^{n}$
- Example: $3^{n} \neq O\left(2^{n}\right)$

Other notation

- Definition: Ω (big-Omega)
- Let f, g be two functions: $N \rightarrow R^{\geq 0}$
- We write $f(n)=\Omega(g(n))$, and say " $f(n)$ is big-Omega of $\mathrm{g}(\mathrm{n})$ " if the following holds:
- There is a positive real c , and a positive integer n_{0}, such that $f(n) \geq c g(n)$ for every $n \geq n_{0}$.
- That is, $f(n)$ is bounded from below by a positive constant times $g(n)$, for all sufficiently large n.
- Used for complexity lower bounds.
- Example: $3 n^{2}+4 n \log (n)=\Omega\left(n^{2}\right)$
- Example: $3 n^{7}=\Omega\left(n^{4}\right)$.
- Example: $\log _{\mathrm{e}}(\mathrm{n})=\Omega\left(\log _{2}(\mathrm{n})\right)$
- Example: $3^{\mathrm{n}}=\Omega\left(2^{\mathrm{n}}\right)$

Other notation

- Definition: Θ (Theta)
- Let f, g be two functions: $N \rightarrow R^{\geq 0}$
- We write $f(n)=\Theta(g(n))$, and say " $f(n)$ is Theta of $g(n)$ " if $f(n)=O(g(n))$ and $f(n)=\Omega(g(n))$.
- Equivalently, there exist positive reals c_{1}, c_{2}, and positive integer n_{0} such that $c_{1} g(n) \leq f(n) \leq c_{2} g(n)$ for every $\mathrm{n} \geq \mathrm{n}_{0}$.
- Example: $3 n^{2}+4 n \log (n)=\Theta\left(n^{2}\right)$
- Example: $3 n^{4}=\Theta\left(n^{4}\right)$.
- Example: $3 n^{7} \neq \Theta\left(n^{4}\right)$.
- Example: $\log _{\mathrm{e}}(\mathrm{n})=\Theta\left(\log _{2}(\mathrm{n})\right)$
- Example: $3^{n} \neq \Theta\left(2^{n}\right)$

Plugging asymptotics into formulas

- Sometimes we write things like $2^{\Theta\left(\log _{2} \mathrm{n}\right)}$
- What does this mean?
- Means the exponent is some function $f(n)$ that is $\Theta(\log n)$, that is, $c_{1} \log (n) \leq f(n) \leq$ $c_{2} \log (n)$ for every $n \geq n_{0}$.
- So $2^{\mathrm{c}} 1^{\log (n)} \leq 2^{\Theta\left(\log _{2} \mathrm{n}\right)} \leq 2^{\mathrm{c}} \mathrm{l}^{\log (n)}$
- In other words, $\mathrm{n}^{\mathrm{c}_{1}} \leq 2^{\Theta\left(\log _{2} \mathrm{n}\right)} \leq \mathrm{n}^{\mathrm{c}}{ }_{2}$
- Same as $\mathrm{n}^{\Theta(1)}$.

Other notation

- Definition: o (Little-o)
- Let f, g be two functions: $N \rightarrow R^{\geq 0}$
- We write $f(n)=o(g(n))$, and say " $f(n)$ is little-o of $g(n)$ " if for every positive real c , there is some positive integer n_{0}, such that $\mathrm{f}(\mathrm{n})<\mathrm{c} \mathrm{g}(\mathrm{n})$ for every $\mathrm{n} \geq \mathrm{n}_{0}$.
- In other words, no matter what constant c we choose, for sufficiently large $\mathrm{n}, \mathrm{f}(\mathrm{n})$ is less than $\mathrm{g}(\mathrm{n})$.
- In other words, $f(n)$ grows at a slower rate than any constant times $g(n)$.
- In other words, $\lim _{n \rightarrow \infty} f(n) / g(n)=0$.
- Example: $3 n^{4}=o\left(n^{7}\right)$
- Example: $\sqrt{ } n=o(n)$
- Example: $\mathrm{n} \log \mathrm{n}=\mathrm{o}\left(\mathrm{n}^{2}\right)$
- Example: $2^{\mathrm{n}}=0\left(3^{\mathrm{n}}\right)$

Back to the TM running times...

- Running times (worst case over all inputs of the same length n) of the 3 TMs described earlier:
- Simple 1-tape algorithm: $\Theta\left(n^{2}\right)$
- 2-tape algorithm: Θ (n)
- More clever 1-tape algorithm: Θ ($\mathrm{n} \log \mathrm{n}$)
- More precisely, consider any Turing machine M that decides a language.
- Define the running time function $\mathrm{t}_{\mathrm{M}}(\mathrm{n})$ to be:
- $\max _{w \in \Sigma^{n}} \mathrm{t}_{\mathrm{M}}(\mathrm{w})$, where
$-\mathrm{t}_{\mathrm{M}}(\mathrm{w})$ is the exact running time (number of steps) of M on input w.
- Then for these three machines, $t_{M}(n)$ is $\Theta\left(n^{2}\right)$, $\Theta(n)$, and $\Theta(n \log n)$, respectively.

Time Complexity Classes

Time Complexity Classes

- Classify decidable languages according to upper bounds on the running time for TMs that decide them.
- Definition: Let $\mathrm{t}: \mathrm{N} \rightarrow \mathrm{R}^{\geq 0}$ be a (total) function. Then $\operatorname{TIME}(\mathrm{t}(\mathrm{n})$) is the set of languages:
\{ $\mathrm{L} \mid \mathrm{L}$ is decided by some $\mathrm{O}(\mathrm{t}(\mathrm{n})$)-time Turing machine \}
- Call this a "time-bounded complexity class".
- Notes:
- Notice the O---allows some slack.
- To be careful, we need to specify which kind of TM model we are talking about; assume basic 1-tape.
- Complexity Theory studies:
- Which languages are in which complexity classes.
- E.g., is the language PRIMES in TIME(n^{5})?
- How complexity classes are related to each other.
- E.g., is $\operatorname{TIME}\left(\mathrm{n}^{5}\right)=\operatorname{TIME}\left(\mathrm{n}^{6}\right)$, or are there languages that can be decided in time $O\left(n^{6}\right)$ but not in time $O\left(n^{5}\right)$?

Time Complexity Classes

- A problem: Running times are model-dependent.
- E.g., $L=\left\{0^{\mathrm{k}} 1^{\mathrm{k}} \mid \mathrm{k} \geq 0\right\}$:
- On 1-tape TM, can decide in time $O(n \log n)$.
- On 2-tape TM, can decide in time O(n).
- To be definite, we'll define the complexity classes in terms of 1-tape TMs (as Sipser does); others use multi-tape, or other models like Random-Access Machines (RAMs).
- Q: Is this difference important?
- Only up to a point:
- If $L \in \operatorname{TIME}(f(n))$ based on any "standard" machine model, then also $L \in \operatorname{TIME}(g(n))$, where $g(n)=O(p(f(n)))$ for some polynomial p, based on any other "standard" machine model.
- Running times for L in any two standard models are polynomialrelated.
- Example: Single-tape vs. multi-tape Turing machines

Time Complexity Classes

- If $L \in \operatorname{TIME}(f(n))$ based on any "standard" machine model, then also $L \in \operatorname{TIME}(g(n))$, where $g(n)=O(p(f(n)))$ for some polynomial p, based on any other "standard" machine model.
- Example: 1-tape vs. multi-tape Turing machines
- 1-tape \rightarrow multi-tape with no increase in complexity.
- Multi-tape \rightarrow 1-tape: If $\mathrm{t}(\mathrm{n}) \geq \mathrm{n}$ then every $\mathrm{t}(\mathrm{n})$-time multi-tape TM has an equivalent $O\left(\mathrm{t}^{2}(\mathrm{n})\right)$-time 1-tape TM.
- Proof idea:
- 1-tape TM simulates multi-tape TM.
- Simulates each step of multi-tape TM using 2 scans over nonblank portion of tapes, visiting all heads, making all changes.
- Q: What is the time complexity of the simulating 1-tape TM? That is, how many steps does the 1-tape TM use to simulate the $\mathrm{t}(\mathrm{n})$ steps of the multi-tape machine?

Time Complexity Classes

- Example: 1-tape vs. multi-tape Turing machines
- Multi-tape \rightarrow 1-tape: If $\mathrm{t}(\mathrm{n}) \geq \mathrm{n}$ then every $\mathrm{t}(\mathrm{n})$-time multi-tape TM has an equivalent $O\left(\mathrm{t}^{2}(\mathrm{n})\right.$)-time 1-tape TM.
- 1-tape TM simulates multi-tape TM; simulates each step using 2 scans over non-blank portion of tapes, visiting all heads, making all changes.
- Q: What is the time complexity of the 1-tape TM?
- Q: How big can the non-blank portion of the multi-tape TM's tapes become?
- Initially n, for the input.
- In $t(n)$ steps, no bigger than $t(n)$, because that's how far the heads can travel (starts at left).
- So the number of steps by the 1-tape TM is at most:

Time Complexity Classes

- If $L \in \operatorname{TIME}(f(n))$ based on any "standard" machine model, then also $L \in \operatorname{TIME}(g(n))$, where $g(n)=O(p(f(n)))$ for some polynomial p, based on any other "standard" machine model.
- Slightly-idealized versions of real computers, programs in standard languages, other "reasonable" machine models, can be emulated by basic TMs with only polynomial increase in running time.
- Important exception: Nondeterministic Turing machines (or other nondeterministic computing models)
- For nondeterministic TMs, running time is usually measured by max number of steps on any branch.
- A bound of $t(n)$ on the maximum number of steps on any branch translates into $2^{\circ(t(n))}$ steps for basic deterministic TMs.

P, Polynomial Time

P, Polynomial Time

- A formal way to define fast computability.
- Because of simulation results, polynomial differences are considered to be unimportant for (deterministic) TMs.
- So our definition of fast computability ignores polynomial differences.
- Definition: The class P of languages that are decidable in polynomial time is defined by:

$$
P=\cup_{p \text { a poly }} \operatorname{TIME}(p(n))=\cup_{k \geq 0} \operatorname{TIME}\left(n^{k}\right)
$$

- Notes:
- These time-bounded language classes are defined with respect to basic (1-tape, 1-head) Turing machines.
- Simulation results imply that we could have used any "reasonable" deterministic computing model and get the same language class.
- Robust notion.

P, Polynomial Time

- Definition: The class P of languages that are decidable in polynomial time is defined by:

$$
P=\cup_{p \text { a poly }} \operatorname{TIME}(p(n))=\cup_{k \geq 0} \operatorname{TIME}\left(n^{k}\right)
$$

- P plays a role in complexity theory loosely analogous to that of decidable languages in computability.
- Recall Church-Turing thesis:
- If L is decidable using some reasonable model of computation, then it is decidable using any reasonable model of computation.
- Modified Church-Turing thesis:
- If L is decidable in polynomial time using some reasonable deterministic model of computation, then it is decidable in polynomial time using any reasonable deterministic model of computation.
- This is not a theorem---rather, a philosophical statement.
- Can think of this as defining what a reasonable model is.
- We'll focus on the class P for much of our work on complexity theory.

P, Polynomial Time

- We'll focus on the class P for much of our work on complexity theory.
- Q: Why is P a good language class to study?
- It's model-independent (for reasonable models).
- It's scalable:
- Constant-factor dependence on input size.
- E.g., an input that's twice as long requires only c times as much time, for some constant c (depends on degree of the polynomial).
- E.g., consider time bound n^{3}.
- Input of length n takes time n^{3}.
- Input of length $2 n$ takes time $(2 n)^{3}=8 n^{3}, c=8$.
- Works for all polynomials, any degree.

P, Polynomial Time

- Q: Why is P a good language class to study?
- It's model-independent (for reasonable models).
- It's scalable.
- It has nice composition properties:
- Composing two polynomials yields another polynomial.
- This property will be useful later, when we define polynomial-time reducibilities.
- Preview: $A \leq_{p} B$ means that there exists a polynomialtime computable function f such that $x \in A$ if and only if $f(x) \in B$.
- Desirable theorem: $A \leq_{p} B$ and $B \in P$ imply $A \in P$.
- Proof:
- Suppose B is decidable in time $O\left(\mathrm{n}^{k}\right)$.
- Suppose the reducibility function f is computable in time $O\left(n^{\prime}\right)$.

P, Polynomial Time

- P has nice composition properties:
- A $\leq_{p} B$ means that there's a polynomial-time computable function f such that $x \in A$ if and only if $f(x) \in B$.
- Desirable theorem: $A \leq_{p} B$ and $B \in P$ imply $A \in P$.
- Proof:
- Suppose B is decidable in time $O\left(n^{k}\right)$, and f is computable in time $O\left(n^{\prime}\right)$.
- How much time does it take to decide membership in A by reduction to B?
- Given x of length n, time to compute $f(x)$ is $O\left(n^{\prime}\right)$.
- Moreover, $|\mathrm{f}(\mathrm{x})|=\mathrm{O}\left(\mathrm{n}^{\prime}\right)$, since there's not enough time to generate a bigger result.
- Now run B's decision procedure on $f(x)$.
- Takes time $\mathrm{O}\left(|\mathrm{f}(\mathrm{x})|^{\mathrm{k}}\right)=\mathrm{O}\left(\left(\mathrm{n}^{\prime}\right)^{\mathrm{k}}\right)=\mathrm{O}\left(\mathrm{n}^{\mathrm{k}}\right)$.
- Another polynomial, so A is decidable in poly time, so $A \in P$

P, Polynomial Time

- Q: Why is P a good language class to study?
- It's model-independent (for reasonable models).
- It's scalable.
- It has nice composition properties.
- Q: What are some limitations?
- Includes too much:
- Allows polynomials with arbitrarily large exponents and coefficients.
- Time 10,000,000 $\mathrm{n}^{10,000,000}$ isn't really feasible.
- In practice, running times are usually low degree polynomials, up to about $O\left(n^{4}\right)$.
- On the other hand, proving a non-polynomial lower bound is likely to be meaningful.

P, Polynomial Time

- Q: Why is P a good language class to study?
- It's model-independent (for reasonable models).
- It's scalable.
- It has nice composition properties.
- Q: What are some limitations?
- Includes too much.
- Excludes some things:
- Considers worst case time complexity only.
- Some algorithms may work well enough in most cases, or in common cases, even though the worst case is exponential.
- Random choices, with membership being decided with high probability rather than with certainty.
- Quantum computing.

P, Polynomial Time

- Example: A language in P .
- PATH $=\{<G, s, t>\mid G=(V, E)$ is a digraph that has a directed path from s to t \}
- Represent G by adjacency matrix (|V| rows and |V| columns, 1 indicates an edge, 0 indicates no edge).
- Brute-force algorithm: Try all paths of length $\leq|\mathrm{V}|$.
- Exponential running time in input size, not polynomial.
- Better algorithm: BFS of G starting from s.
- Mark new nodes accessible from already-marked nodes, until no new nodes are found.
- Then see if t is marked.
- Complexity analysis:
- At most |V| phases are executed.
- Each phase takes polynomial time to explore marked nodes and their outgoing edges.

A Language Not in P

A Language Not in P

- Q: Is every language in P ?
- No, because $\mathrm{P} \subseteq$ decidable languages, and not every language is decidable.
- Q: Is every decidable language in P ?
- No again, but it takes some work to show this.
- Theorem: For any computable function t, there is a language that is decidable, but cannot be decided by any basic Turing machine in time $t(n)$.
- Proof:
- Fix computable function t .
- Define language $\operatorname{Acc}(\mathrm{t})$
$=\{\langle M\rangle \mid M$ is a basic $T M$ and M accepts $\langle M\rangle$ in $\leq t(|<M\rangle \mid)$ steps $\}$.
- Claim 1: $\operatorname{Acc}(\mathrm{t})$ is decidable.
- Claim 2: Acc(t) is not decided by any basic TM in $\leq t(n)$ steps.

A Language Not in P

- Theorem: For any computable function t, there is a language that is decidable, but cannot be decided by any basic Turing machine in time $t(n)$.
- Proof:
- $\operatorname{Acc}(\mathrm{t})=\{\langle\mathrm{M}>| \mathrm{M}$ is a basic TM that accepts $<\mathrm{M}>$ in \leq $t(|<M>|)$ steps $\}$.
- Claim 1: $\operatorname{Acc}(\mathrm{t})$ is decidable.
- Given $<\mathrm{M}>$, simulate M on $<\mathrm{M}>$ for $\mathrm{t}(|<\mathrm{M}>|)$ simulated steps and see if it accepts.
- Claim 2: Acc(t) is not decided by any basic TM in $\leq \mathrm{t}(\mathrm{n})$ steps.
- Use a diagonalization proof, like that for $\mathrm{Acc}_{\text {тм }}$.
- Assume $\operatorname{Acc}(\mathrm{t})$ is decided in time $\leq \mathrm{t}(\mathrm{n})$ by some basic TM.
- Here, $\mathrm{n}=|<\mathrm{M}>|$ for input $<\mathrm{M}>$.

A Language Not in P

- Theorem: For any computable function t, there is a language that is decidable, but cannot be decided by any basic Turing machine in time $t(n)$.
- $\operatorname{Acc}(t)=\{<M>\mid M$ is a basic TM that accepts $<M>$ in \leq $t(|<M>|)$ steps $\}$.
- Claim 2: $\operatorname{Acc}(\mathrm{t})$ is not decided by any basic TM in $\leq \mathrm{t}(\mathrm{n})$ steps.
- Proof:
- Assume $\operatorname{Acc}(\mathrm{t})$ is decided in time $\leq \mathrm{t}(\mathrm{n})$ by some basic TM.
- Then $\operatorname{Acc}(\mathrm{t})^{c}$ is decided in time $\leq \mathrm{t}(\mathrm{n})$, by another basic TM.
- Interchange q_{acc} and $\mathrm{q}_{\mathrm{rej}}$ states.
- Let M_{0} be a basic TM that decides $\operatorname{Acc}(t)^{c}$ in time $\leq t(n)$.
- That means $t(n)$ steps of M_{0}, not $t(n)$ simulated steps.
- Thus, for every basic Turing machine M:
- If $<M>\in \operatorname{Acc}(\mathrm{t})^{\mathrm{c}}$, then M_{0} accepts $<\mathrm{M}>$ in time $\leq \mathrm{t}(|<\mathrm{M}>|)$.
- If $<M>\in \operatorname{Acc}(\mathrm{t})$, then M_{0} rejects $<\mathrm{M}>$ in time $\leq \mathrm{t}(|<\mathrm{M}>|)$.

A Language Not in P

- Theorem: For any computable function t, there is a language that is decidable, but cannot be decided by any basic Turing machine in time $t(n)$.
- $\operatorname{Acc}(t)=\{<M>\mid M$ is a basic TM that accepts $<M>$ in \leq $t(|<M>|)$ steps $\}$.
- Claim 2: $\operatorname{Acc}(\mathrm{t})$ is not decided by any basic TM in $\leq \mathrm{t}(\mathrm{n})$ steps.
- Proof:
- Assume $\operatorname{Acc}(\mathrm{t})$ is decided in time $\leq \mathrm{t}(\mathrm{n})$ by some basic TM.
$-\operatorname{Acc}(\mathrm{t})^{\text {c }}$ is decided in time $\leq \mathrm{t}(\mathrm{n})$, by basic $\mathrm{TM} \mathrm{M}_{0}$.
- Thus, for every basic Turing machine M:
- If $<\mathrm{M}>\in \operatorname{Acc}(\mathrm{t})^{\mathrm{c}}$, then M_{0} accepts $<\mathrm{M}>$ in time $\leq \mathrm{t}(|<\mathrm{M}>|)$.
- If $<\mathrm{M}>\in \operatorname{Acc}(\mathrm{t})$, then M_{0} rejects $<\mathrm{M}>$ in time $\leq \mathrm{t}(|<\mathrm{M}>|)$.
- Thus, for every basic Turing machine M :
- <M> $\in \operatorname{Acc}(\mathrm{t})^{\text {c iff }} \mathrm{M}_{0}$ accepts $<\mathrm{M}>$ in time $\leq \mathrm{t}(|<\mathrm{M}>|)$.

A Language Not in P

- Theorem: For any computable function t, there is a language that is decidable, but cannot be decided by any basic Turing machine in time $t(n)$.
- $\operatorname{Acc}(\mathrm{t})=\{<\mathrm{M}>\mid \mathrm{M}$ is a basic TM that accepts $<\mathrm{M}>$ in \leq $t(|<M>|)$ steps $\}$.
- Claim 2: $\operatorname{Acc}(\mathrm{t})$ is not decided by any basic TM in $\leq \mathrm{t}(\mathrm{n})$ steps.
- Proof:
- Assume $\operatorname{Acc}(\mathrm{t})$ is decided in time $\leq \mathrm{t}(\mathrm{n})$ by some basic TM.
- Acc $(\mathrm{t})^{\text {c }}$ is decided in time $\leq \mathrm{t}(\mathrm{n})$, by basic TM M_{0}.
- For every basic Turing machine M :

$$
<\mathrm{M}>\in \operatorname{Acc}(\mathrm{t})^{c} \text { iff } \mathrm{M}_{0} \text { accepts }<\mathrm{M}>\text { in time } \leq \mathrm{t}(|<\mathrm{M}>|) .
$$

- However, by definition of $\operatorname{Acc}(\mathrm{t})$, for every basic TM M:
$<\mathrm{M}>\in \operatorname{Acc}(\mathrm{t})^{\text {c iff }} \mathrm{M}$ does not accept $<\mathrm{M}>$ in time $\leq \mathrm{t}(|<\mathrm{M}>|)$.

A Language Not in P

- Claim 2: $\operatorname{Acc}(\mathrm{t})$ is not decided by any basic TM in $\leq \mathrm{t}(\mathrm{n})$ steps.
- Proof:
- Assume $\operatorname{Acc}(\mathrm{t})$ is decided in time $\leq \mathrm{t}(\mathrm{n})$ by some basic TM.
- Acc $(\mathrm{t})^{\text {c }}$ is decided in time $\leq \mathrm{t}(\mathrm{n})$, by basic TM M_{0}.
- For every basic Turing machine M:
$<\mathrm{M}>\in \operatorname{Acc}(\mathrm{t})^{c}$ iff M_{0} accepts $<\mathrm{M}>$ in time $\leq \mathrm{t}(|<\mathrm{M}>|)$.
$<M>\in A c c(t)^{c}$ iff M does not accept $<M>$ in time $\leq t(|<M>|)$.
- Now plug in M_{0} for M in both statements:
$<\mathrm{M}_{0}>\in \operatorname{Acc}(\mathrm{t})^{\text {c }}$ iff M_{0} accepts $<\mathrm{M}_{0}>$ in time $\leq \mathrm{t}\left(\left|<\mathrm{M}_{0}>\right|\right)$.
$<M_{0}>\in \operatorname{Acc}(\mathrm{t})^{c}$ iff M_{0} does not accept $<\mathrm{M}_{0}>$ in time $\leq \mathrm{t}\left(\left|<\mathrm{M}_{0}>\right|\right)$.
- Contradiction!

A Language Not in P

- $\operatorname{Acc}(\mathrm{t})=\{<\mathrm{M}>\mid \mathrm{M}$ is a basic TM that accepts $<\mathrm{M}>$ in \leq $\mathrm{t}(|<\mathrm{M}>|)$ steps $\}$.
- We have proved:
- Theorem: For any computable function t, there is a language that is decidable, but cannot be decided by any basic Turing machine in time $t(n)$.
- Proof:
- Claim 1: $\operatorname{Acc}(\mathrm{t})$ is decidable.
- Claim 2: $\operatorname{Acc}(\mathrm{t})$ is not decided by any basic $T M$ in $\leq t(n)$ steps.
- Thus, for every computable function $\mathrm{t}(\mathrm{n})$, no matter how large (exponential, double-exponential,...), there are decidable languages not decidable in time $\mathrm{t}(\mathrm{n})$.
- In particular, there are decidable languages not in P .

Hierarchy Theorems

Hierarchy Theorems

- Simplified summary, from Sipser Section 9.1.
- $\operatorname{Acc}(\mathrm{t})=\{<\mathrm{M}>\mid \mathrm{M}$ is a basic TM that accepts $<\mathrm{M}>$ in \leq $t(|<M>|)$ steps $\}$
- We have just proved that, for any computable function t, the language $\operatorname{Acc}(\mathrm{t})$ is decidable, but cannot be decided by any basic TM in time $t(n)$.
- Q: How much time does it take to compute $\operatorname{Acc}(\mathrm{t})$?
- More than $\mathrm{t}(\mathrm{n})$, but how much more?
- Technical assumption: t is "time-constructible", meaning it can be computed in an amount of time that is not much bigger than titself.
- Examples: Typical functions, like polynomials, exponentials, double-exponentials,...

Hierarchy Theorems

- $\operatorname{Acc}(\mathrm{t})=\{<\mathrm{M}>\mid \mathrm{M}$ is a basic TM that accepts $<\mathrm{M}>$ in \leq $\mathrm{t}(|<\mathrm{M}>|)$ steps $\}$
- Q: How much time does it take to compute $\operatorname{Acc}(\mathrm{t})$?
- Theorem (informal statement): If t is any time-constructible function, then $\operatorname{Acc}(\mathrm{t})$ can be decided by a basic TM in time not much bigger than $t(n)$.
- E.g., approximately $\mathrm{t}^{2}(\mathrm{n})$.
- Sipser (Theorem 9.10) gives a tighter bound.
- Q: Why exactly does it take much more than $\mathrm{t}(\mathrm{n})$ time to run an arbitrary machine M on $<M>$ for $t(|<M>|)$ simulated steps?
- We must simulate an arbitrary machine M using a fixed "universal" TM, with a fixed state set, fixed alphabet, etc.

Hierarchy Theorems

- Theorem (informal): If t is any time-constructible function, then Acc(t) can be decided by a basic TM in time not much bigger than $t(n)$.
- E.g., approximately $\mathrm{t}^{2}(\mathrm{n})$.
- Implies that there is:
- A language decidable in time n^{2} but not time n .
- A language decidable in time n^{6} but not time n^{3}.
- A language decidable in time 4^{n} but not time 2^{n}.
- Extend this reasoning to show:
$-\operatorname{TIME}(n) \neq \operatorname{TIME}\left(n^{2}\right) \neq \operatorname{TIME}\left(n^{4}\right) \ldots$

$$
\neq \operatorname{TIME}\left(2^{n}\right) \neq \operatorname{TIME}\left(4^{n}\right) \ldots
$$

- A hierarchy of distinct language classes.

Next time...

- The Midterm!

MIT OpenCourseWare
http://ocw.mit.edu

$6.045 \mathrm{~J} / 18.400 \mathrm{~J}$ Automata, Computability, and Complexity

Spring 2011

For information about citing these materials or our Terms of Use, visit: hhttp://ocw.mit.edu/terms.

