6.045: Automata, Computability, and Complexity Or, GITCS

> Class 12 Nancy Lynch

Today: Complexity Theory

- First part of the course: Basic models of computation
 - Circuits, decision trees
 - DFAs, NFAs:
 - Restricted notion of computation: no auxiliary memory, just one pass over input.
 - Yields restricted class of languages: regular languages.
- Second part: Computability
 - Very general notion of computation.
 - Machine models like Turing machines, or programs in general (idealized) programming languages.
 - Unlimited storage, multiple passes over input, compute arbitrarily long, possibly never halt.
 - Yields large language classes: Turing-recognizable = enumerable, and Turing-decidable.
- Third part: Complexity theory

Complexity Theory

- First part of the course: Basic models of computation
- Second part: Computability
- Third part: Complexity theory
 - A middle ground.
 - Restrict the general TM model by limiting its use of resources:
 - Computing time (number of steps).
 - Space = storage (number of tape squares used).
 - Leads to interesting subclasses of the Turing-decidable languages, based on specific bounds on amounts of resources used.
 - Compare:
 - Computability theory answers the question "What languages are computable (at all)?"
 - Complexity theory answers "What languages are computable with particular restrictions on amount of resources?"

Complexity Theory

- Topics
 - Examples of time complexity analysis (informal).
 - Asymptotic function notation: O, o, Ω , Θ
 - Time complexity classes
 - P, polynomial time
 - Languages not in P
 - Hierarchy theorems
- Reading:
 - Sipser, Sections 7.1, 7.2, and a bit from 9.1.
- Next:
 - Midterm, then Section 7.3 (after the break).

Examples of time complexity analysis

Examples of time complexity analysis

- Consider a basic 1-tape Turing machine M that decides membership in the language L = {0^k1^k | k ≥ 0}:
 - M first checks that its input is in 0*1*, using one left-to-right pass.
 - Returns to the beginning (left).
 - Then does repeated passes, each time crossing off one 0 and one
 1, until it runs out of at least one of them.
 - If it runs out of both on the same pass, accepts, else rejects.
- Q: How much time until M halts?
- Depends on the particular input.
- Example: 0111...1110 (length n)
 - Approximately n steps to reject---not in 0*1*,
- Example: 00...011...1 (n/2 0s and n/2 1s)
 - Approximately (at most) $2n + (n/2) 2n = 2n + n^2$ steps to accept.

Initial Check passes Upper bound on steps For one pass

- $L(M) = \{0^k 1^k \mid k \ge 0\}.$
- Time until M halts depends on the particular input.
- 0111...1110 (length n)
 - Approximately n steps to reject---not in 0*1*,
- 00...011...1 (n/2 0s and n/2 1s)
 - Approximately (at most) $2n + n^2$ steps to accept.
- It's too complicated to determine exactly how many steps are required for every input.
- So instead, we:
 - Get a close upper bound, not an exact step count.
 - Express the bound as a function of the input length n, thus grouping together all inputs of the same length and considering the max.
 - Often ignore constant factors and low-order terms.
- So, we describe the time complexity of M as O(n²).
 - At most some constant times n².

- $L(M) = \{0^k 1^k \mid k \ge 0\}.$
- Time complexity of machine $M = O(n^2)$.
- Q: Can we do better with a multitape machine?
- Yes, with 2 tapes:
 - After checking 0*1*, the machine copies the 0s to the second tape.
 - Then moves 2 heads together, one scanning the 0s on the second tape and one scanning the 1s on the first tape.
 - Check that all the symbols match.
 - Time O(n), proportional to n.

- $L(M) = \{0^k 1^k \mid k \ge 0\}.$
- 1-tape machine: O(n²), 2-tape machine: O(n).
- Q: Can we beat O(n²) with a 1-tape machine?
- Yes, can get O(n log n):
 - First check 0*1*, as before, O(n) steps.
 - Then perform marking phases, as long as some unmarked 0 and some unmarked 1 remain.
 - In each marking phase:
 - Scan to see whether # of unmarked 0s \equiv # of unmarked 1s, mod 2.
 - That is, see whether they have the same parity.
 - If not, then reject, else continue.
 - Scan again, marking every other 0 starting with the first and every other 1 starting with the first.
 - After all phases are complete:
 - If just 0s or just 1s remain, then reject
 - If no unmarked symbols remain, then accept.

- O(n log n) algorithm:
 - Check 0*1*.
 - Perform marking phases, as long as some unmarked 0 and some unmarked 1 remain.
 - In each marking phase:
 - Scan to see if # of unmarked 0s = # of unmarked 1s, mod 2; if not, then reject, else continue.
 - Scan again, marking every other 0 starting with the first and every other 1 starting with the first.
 - If just 0s or just 1s remain, then reject, else accept.
- Example: 00...011...1 (25 0s and 25 1s)
 - Correct form, 0*1*.
 - Phase 1: Same parity (odd), marking leaves 12 0s and 12 1s.
 - Phase 2: Same parity (even), marking leaves 6, 6.
 - Phase 3: Same parity (even), marking leaves 3, 3.
 - Phase 4: Same parity (odd), marking leaves 1,1.
 - Phase 5: Same parity (odd), marking leaves 0,0
 - Accept

- Example: 00...011...1 (25 0s and 25 1s)
 - Correct form, 0*1*.
 - Phase 1: Same parity (odd), marking leaves 12 0s and 12 1s.
 - Phase 2: Same parity (even), marking leaves 6, 6.
 - Phase 3: Same parity (even), marking leaves 3, 3.
 - Phase 4: Same parity (odd), marking leaves 1,1.
 - Phase 5: Same parity (odd), marking leaves 0,0
 - Accept
- Odd parity leads to remainder 1 on division by 2, even parity leads to remainder 0.
- Can read off odd-even parity designations to get binary representations of the numbers, starting with final phase for high-order bit:
 - 5: odd; 4: odd; 3: even; 2: even; 1: odd
 - Yields 1 1 0 0 1, binary representation of 25
- If the algorithm accepts, it means the 2 numbers have the same binary representation, so they are equal.

- Example: 00...011...1 (17 0s and 25 1s)
 - Correct form, 0*1*.
 - Phase 1: Same parity (odd), marking leaves 8 0s and 12 1s.
 - Phase 2: Same parity (even), marking leaves 4, 6.
 - Phase 3: Same parity (even), marking leaves 2, 3.
 - Phase 4: Different parity, reject
 - Don't complete this, so don't generate the complete binary representation of either number.

- Algorithm
 - Check 0*1*.
 - Perform marking phases, as long as some unmarked 0 and some unmarked 1 remain.
 - In each marking phase:
 - Scan to see if # of unmarked 0s = # of unmarked 1s, mod 2; if not, then reject, else continue.
 - Scan again, marking every other 0 starting with the first and every other 1 starting with the first.
 - If just 0s or just 1s remain, then reject, else accept.
- Complexity analysis:
 - Number of phases is O(log₂ n), since we (approximately) halve the number of unmarked 0s and unmarked 1s at each phase.
 - Time for each phase: O(n).
 - Total: O(n log n).
- This analysis is informal; now define O, etc., more carefully and then revisit the example.

Asymptotic function notation: O, o, Ω , Θ

Asymptotic function notation

- Definition: O (big-O)
 - Let f, g be two functions: $N \rightarrow R^{\geq 0}$.
 - We write f(n) = O(g(n)), and say "f(n) is big-O of g(n)" if the following holds:
 - There is a positive real c, and a positive integer n_0 , such that $f(n) \le c g(n)$ for every $n \ge n_0$.
 - That is, f(n) is bounded from above by a constant times g(n), for all sufficiently large n.
- Often used for complexity upper bounds.
- Example: n + 2 = O(n); can use c = 2, $n_0 = 2$.
- Example: $3n^2 + n = O(n^2)$; can use c = 4, $n_0 = 1$.
- Example: Any degree-k polynomial with nonnegative coefficients, $p(n) = a_k n^k + a_{k-1} n^{k-1} + ... + a_1 n + a_0 = O(n^k)$
 - Thus, $3n^4 + 6n^2 + 17 = O(n^4)$.

More big-O examples

- Definition:
 - Let f, g: N $\rightarrow R^{\geq 0}$
 - f(n) = O(g(n)) means that there is a positive real c, and a positive integer n_0 , such that $f(n) \le c g(n)$ for every $n \ge n_0$.
- Example: $3n^4 = O(n^7)$, though this is not the tightest possible statement.
- Example: $3n^7 \neq O(n^4)$.
- Example: log₂(n) = O(log_e(n)); log_a(n) = O(log_b(n)) for any a and b
 - Because logs to different bases differ by a constant factor.
- **Example**: $2^{3+n} = O(2^n)$, because $2^{3+n} = 8 \times 2^n$
- Example: $3^n \neq O(2^n)$

Other notation

- Definition: Ω (big-Omega)
 - Let f, g be two functions: $N \to R^{\geq 0}$
 - We write $f(n) = \Omega(g(n))$, and say "f(n) is big-Omega of g(n)" if the following holds:
 - There is a positive real c, and a positive integer n_0 , such that $f(n) \ge c g(n)$ for every $n \ge n_0$.
 - That is, f(n) is bounded from below by a positive constant times g(n), for all sufficiently large n.
- Used for complexity lower bounds.
- **Example**: $3n^2 + 4n \log(n) = \Omega(n^2)$
- **Example**: $3n^7 = \Omega(n^4)$.
- Example: $\log_e(n) = \Omega(\log_2(n))$
- **Example**: $3^n = \Omega(2^n)$

Other notation

- Definition: Θ (Theta)
 - Let f, g be two functions: $N \to R^{\geq 0}$
 - We write $f(n) = \Theta(g(n))$, and say "f(n) is Theta of g(n)" if f(n) = O(g(n)) and $f(n) = \Omega(g(n))$.
 - Equivalently, there exist positive reals c_1 , c_2 , and positive integer n_0 such that $c_1g(n) \le f(n) \le c_2g(n)$ for every $n \ge n_0$.
- Example: $3n^2 + 4n \log(n) = \Theta(n^2)$
- Example: $3n^4 = \Theta(n^4)$.
- Example: $3n^7 \neq \Theta(n^4)$.
- Example: $\log_e(n) = \Theta(\log_2(n))$
- Example: $3^n \neq \Theta(2^n)$

Plugging asymptotics into formulas

- Sometimes we write things like $2^{\Theta(\log_2 n)}$
- What does this mean?
- Means the exponent is some function f(n)that is $\Theta(\log n)$, that is, $c_1 \log(n) \le f(n) \le c_2 \log(n)$ for every $n \ge n_0$.
- So $2^{c_1 \log(n)} \le 2^{\Theta(\log_2 n)} \le 2^{c_2 \log(n)}$
- In other words, $n^{c_1} \leq 2^{\Theta(\log_2 n)} \leq n^{c_2}$
- Same as $n^{\Theta(1)}$.

Other notation

- Definition: o (Little-o)
 - Let f, g be two functions: $N \to R^{\geq 0}$
 - We write f(n) = o(g(n)), and say "f(n) is little-o of g(n)" if for every positive real c, there is some positive integer n_0 , such that f(n) < c g(n) for every $n \ge n_0$.
 - In other words, no matter what constant c we choose, for sufficiently large n, f(n) is less than g(n).
 - In other words, f(n) grows at a slower rate than any constant times g(n).
 - In other words, $\lim_{n\to\infty} f(n)/g(n) = 0$.
- **Example**: $3n^4 = o(n^7)$
- Example: $\sqrt{n} = o(n)$
- **Example**: $n \log n = o(n^2)$
- **Example**: $2^n = o(3^n)$

Back to the TM running times...

- Running times (worst case over all inputs of the same length n) of the 3 TMs described earlier:
 - Simple 1-tape algorithm: $\Theta(n^2)$
 - 2-tape algorithm: $\Theta(n)$
 - More clever 1-tape algorithm: $\Theta(n \log n)$
- More precisely, consider any Turing machine M that decides a language.
- Define the running time function $t_M(n)$ to be:
 - $\max_{w \in \Sigma^n} t'_M(w)$, where
 - $t^\prime_{\,\rm M}(w)$ is the exact running time (number of steps) of M on input w.
- Then for these three machines, t_M(n) is Θ(n²),
 Θ(n), and Θ(n log n), respectively.

- Classify decidable languages according to upper bounds on the running time for TMs that decide them.
- Definition: Let t: $N \rightarrow R^{\geq 0}$ be a (total) function. Then TIME(t(n)) is the set of languages:

{ L | L is decided by some O(t(n))-time Turing machine }

- Call this a "time-bounded complexity class".
- Notes:
 - Notice the O---allows some slack.
 - To be careful, we need to specify which kind of TM model we are talking about; assume basic 1-tape.
- Complexity Theory studies:
 - Which languages are in which complexity classes.
 - E.g., is the language PRIMES in TIME(n⁵)?
 - How complexity classes are related to each other.
 - E.g., is TIME(n⁵) = TIME(n⁶), or are there languages that can be decided in time O(n⁶) but not in time O(n⁵)?

- A problem: Running times are model-dependent.
- E.g., $L = \{0^k 1^k \mid k \ge 0\}$:
 - On 1-tape TM, can decide in time O(n log n).
 - On 2-tape TM, can decide in time O(n).
- To be definite, we'll define the complexity classes in terms of 1-tape TMs (as Sipser does); others use multi-tape, or other models like Random-Access Machines (RAMs).
- Q: Is this difference important?
- Only up to a point:
 - If $L \in TIME(f(n))$ based on any "standard" machine model, then also $L \in TIME(g(n))$, where g(n) = O(p(f(n))) for some polynomial p, based on any other "standard" machine model.
 - Running times for L in any two standard models are polynomialrelated.
- Example: Single-tape vs. multi-tape Turing machines

- If L ∈ TIME(f(n)) based on any "standard" machine model, then also L ∈ TIME(g(n)), where g(n) = O(p(f(n))) for some polynomial p, based on any other "standard" machine model.
- Example: 1-tape vs. multi-tape Turing machines
 - 1-tape \rightarrow multi-tape with no increase in complexity.
 - Multi-tape → 1-tape: If t(n) ≥ n then every t(n)-time multi-tape TM has an equivalent O(t²(n))-time 1-tape TM.
 - Proof idea:
 - 1-tape TM simulates multi-tape TM.
 - Simulates each step of multi-tape TM using 2 scans over nonblank portion of tapes, visiting all heads, making all changes.
 - Q: What is the time complexity of the simulating 1-tape TM? That is, how many steps does the 1-tape TM use to simulate the t(n) steps of the multi-tape machine?

- Example: 1-tape vs. multi-tape Turing machines
 - Multi-tape → 1-tape: If t(n) ≥ n then every t(n)-time multi-tape TM has an equivalent O(t²(n))-time 1-tape TM.
 - 1-tape TM simulates multi-tape TM; simulates each step using 2 scans over non-blank portion of tapes, visiting all heads, making all changes.
 - Q: What is the time complexity of the 1-tape TM?
 - Q: How big can the non-blank portion of the multi-tape TM's tapes become?
 - Initially n, for the input.
 - In t(n) steps, no bigger than t(n), because that's how far the heads can travel (starts at left).
 - So the number of steps by the 1-tape TM is at most:

- If L ∈ TIME(f(n)) based on any "standard" machine model, then also L ∈ TIME(g(n)), where g(n) = O(p(f(n))) for some polynomial p, based on any other "standard" machine model.
- Slightly-idealized versions of real computers, programs in standard languages, other "reasonable" machine models, can be emulated by basic TMs with only polynomial increase in running time.
- Important exception: Nondeterministic Turing machines (or other nondeterministic computing models)
 - For nondeterministic TMs, running time is usually measured by max number of steps on any branch.
 - A bound of t(n) on the maximum number of steps on any branch translates into 2^{O(t(n))} steps for basic deterministic TMs.

- A formal way to define fast computability.
- Because of simulation results, polynomial differences are considered to be unimportant for (deterministic) TMs.
- So our definition of fast computability ignores polynomial differences.
- Definition: The class P of languages that are decidable in polynomial time is defined by:

 $\mathsf{P} = \cup_{p \text{ a poly}} \mathsf{TIME}(p(n)) = \cup_{k \ge 0} \mathsf{TIME}(n^k)$

- Notes:
 - These time-bounded language classes are defined with respect to basic (1-tape, 1-head) Turing machines.
 - Simulation results imply that we could have used any "reasonable" deterministic computing model and get the same language class.
 - Robust notion.

 Definition: The class P of languages that are decidable in polynomial time is defined by:

 $\mathsf{P} = \bigcup_{p \text{ a poly}} \mathsf{TIME}(p(n)) = \bigcup_{k \ge 0} \mathsf{TIME}(n^k)$

- P plays a role in complexity theory loosely analogous to that of decidable languages in computability.
- Recall Church-Turing thesis:
 - If L is decidable using some reasonable model of computation, then it is decidable using any reasonable model of computation.
- Modified Church-Turing thesis:
 - If L is decidable in polynomial time using some reasonable deterministic model of computation, then it is decidable in polynomial time using any reasonable deterministic model of computation.
- This is not a theorem---rather, a philosophical statement.
- Can think of this as defining what a reasonable model is.
- We'll focus on the class P for much of our work on complexity theory.

- We'll focus on the class P for much of our work on complexity theory.
- Q: Why is P a good language class to study?
- It's model-independent (for reasonable models).
- It's scalable:
 - Constant-factor dependence on input size.
 - E.g., an input that's twice as long requires only c times as much time, for some constant c (depends on degree of the polynomial).
 - E.g., consider time bound n³.
 - Input of length n takes time n³.
 - Input of length 2n takes time $(2n)^3 = 8 n^3$, c = 8.
 - Works for all polynomials, any degree.

- Q: Why is P a good language class to study?
- It's model-independent (for reasonable models).
- It's scalable.
- It has nice composition properties:
 - Composing two polynomials yields another polynomial.
 - This property will be useful later, when we define polynomial-time reducibilities.
 - Preview: $A \leq_p B$ means that there exists a polynomialtime computable function f such that $x \in A$ if and only if $f(x) \in B$.
 - Desirable theorem: $A \leq_p B$ and $B \in P$ imply $A \in P$.
 - Proof:
 - Suppose B is decidable in time O(n^k).
 - Suppose the reducibility function f is computable in time O(n^I).

- P has nice composition properties:
 - $A \leq_p B$ means that there's a polynomial-time computable function f such that $x \in A$ if and only if $f(x) \in B$.
 - Desirable theorem: $A \leq_p B$ and $B \in P$ imply $A \in P$.
 - Proof:
 - Suppose B is decidable in time O(n^k), and f is computable in time O(n^l).
 - How much time does it take to decide membership in A by reduction to B?
 - Given x of length n, time to compute f(x) is $O(n^{l})$.
 - Moreover, |f(x)| = O(n^I), since there's not enough time to generate a bigger result.
 - Now run B's decision procedure on f(x).
 - Takes time $O(|f(x)|^k) = O((n^l)^k) = O((n^{lk}))$.
 - Another polynomial, so A is decidable in poly time, so $\mathsf{A} \in \mathsf{P}$

- Q: Why is P a good language class to study?
 - It's model-independent (for reasonable models).
 - It's scalable.
 - It has nice composition properties.
- Q: What are some limitations?
 - Includes too much:
 - Allows polynomials with arbitrarily large exponents and coefficients.
 - Time 10,000,000 n^{10,000,000} isn't really feasible.
 - In practice, running times are usually low degree polynomials, up to about O(n⁴).
 - On the other hand, proving a non-polynomial lower bound is likely to be meaningful.

- Q: Why is P a good language class to study?
 - It's model-independent (for reasonable models).
 - It's scalable.
 - It has nice composition properties.
- Q: What are some limitations?
 - Includes too much.
 - Excludes some things:
 - Considers worst case time complexity only.
 - Some algorithms may work well enough in most cases, or in common cases, even though the worst case is exponential.
 - Random choices, with membership being decided with high probability rather than with certainty.
 - Quantum computing.

- Example: A language in P.
 - PATH = { < G, s, t > | G = (V, E) is a digraph that has a directed path from s to t }
 - Represent G by adjacency matrix (|V| rows and |V| columns, 1 indicates an edge, 0 indicates no edge).
 - Brute-force algorithm: Try all paths of length $\leq |V|$.
 - Exponential running time in input size, not polynomial.
 - Better algorithm: BFS of G starting from s.
 - Mark new nodes accessible from already-marked nodes, until no new nodes are found.
 - Then see if t is marked.
 - Complexity analysis:
 - At most |V| phases are executed.
 - Each phase takes polynomial time to explore marked nodes and their outgoing edges.

- Q: Is every language in P?
- No, because P ⊆ decidable languages, and not every language is decidable.
- Q: Is every decidable language in P?
- No again, but it takes some work to show this.
- Theorem: For any computable function t, there is a language that is decidable, but cannot be decided by any basic Turing machine in time t(n).
- Proof:
 - Fix computable function t.
 - Define language Acc(t)
 - = { <M> | M is a basic TM and M accepts <M> in $\leq t(|<M>|)$ steps }.
 - Claim 1: Acc(t) is decidable.
 - Claim 2: Acc(t) is not decided by any basic TM in \leq t(n) steps.

- Theorem: For any computable function t, there is a language that is decidable, but cannot be decided by any basic Turing machine in time t(n).
- Proof:
 - Acc(t) = { <M> | M is a basic TM that accepts <M> in $\leq t(|<M>|)$ steps }.
 - Claim 1: Acc(t) is decidable.
 - Given <M>, simulate M on <M> for t(|<M>|) simulated steps and see if it accepts.
 - Claim 2: Acc(t) is not decided by any basic TM in $\leq t(n)$ steps.
 - Use a diagonalization proof, like that for Acc_{TM} .
 - Assume Acc(t) is decided in time ≤ t(n) by some basic TM.
 Here, n = |<M>| for input <M>.

- Theorem: For any computable function t, there is a language that is decidable, but cannot be decided by any basic Turing machine in time t(n).
- Acc(t) = { <M> | M is a basic TM that accepts <M> in $\leq t(|<M>|)$ steps }.
- Claim 2: Acc(t) is not decided by any basic TM in ≤ t(n) steps.
- Proof:
 - Assume Acc(t) is decided in time $\leq t(n)$ by some basic TM.
 - Then Acc(t)^c is decided in time $\leq t(n)$, by another basic TM.
 - Interchange q_{acc} and q_{rej} states.
 - Let M_0 be a basic TM that decides $Acc(t)^c$ in time $\leq t(n)$.
 - That means t(n) steps of M₀, not t(n) simulated steps.
 - Thus, for every basic Turing machine M:
 - If $\langle M \rangle \in Acc(t)^c$, then M_0 accepts $\langle M \rangle$ in time $\leq t(|\langle M \rangle|)$.
 - If $\langle M \rangle \in Acc(t)$, then M_0 rejects $\langle M \rangle$ in time $\leq t(|\langle M \rangle|)$.

- Theorem: For any computable function t, there is a language that is decidable, but cannot be decided by any basic Turing machine in time t(n).
- Acc(t) = { <M> | M is a basic TM that accepts <M> in $\leq t(|<M>|)$ steps }.
- Claim 2: Acc(t) is not decided by any basic TM in ≤ t(n) steps.
- Proof:
 - Assume Acc(t) is decided in time $\leq t(n)$ by some basic TM.
 - Acc(t)^c is decided in time \leq t(n), by basic TM M₀.
 - Thus, for every basic Turing machine M:
 - If $<M> \in Acc(t)^c$, then M_0 accepts <M> in time $\leq t(|<M>|)$.
 - If $\langle M \rangle \in Acc(t)$, then M_0 rejects $\langle M \rangle$ in time $\leq t(|\langle M \rangle|)$.
 - Thus, for every basic Turing machine M:
 - < M> \in Acc(t)^c iff M₀ accepts < M> in time $\le t(|<$ M>|).

- Theorem: For any computable function t, there is a language that is decidable, but cannot be decided by any basic Turing machine in time t(n).
- Acc(t) = { <M> | M is a basic TM that accepts <M> in ≤ t(|<M>|) steps }.
- Claim 2: Acc(t) is not decided by any basic TM in ≤ t(n) steps.
- Proof:
 - Assume Acc(t) is decided in time $\leq t(n)$ by some basic TM.
 - Acc(t)^c is decided in time \leq t(n), by basic TM M₀.
 - For every basic Turing machine M:

<M $> \in$ Acc(t)^c iff M₀ accepts <M> in time $\leq t(|<$ M>|).

However, by definition of Acc(t), for every basic TM M:
 <M> ∈ Acc(t)^c iff M does not accept <M> in time ≤ t(|<M>|).

- Claim 2: Acc(t) is not decided by any basic TM in ≤ t(n) steps.
- Proof:
 - Assume Acc(t) is decided in time $\leq t(n)$ by some basic TM.
 - Acc(t)^c is decided in time $\leq t(n)$, by basic TM M₀.
 - For every basic Turing machine M:

<M $> \in$ Acc(t)^c iff M₀ accepts <M> in time $\leq t(|<$ M>|).

<M $> \in$ Acc(t)^c iff M does not accept <M> in time $\leq t(|<$ M>|).

- Now plug in M_0 for M in both statements:

<M₀ $> \in$ Acc(t)^c iff M₀ accepts <M₀> in time $\leq t(|<$ M₀>|).

<M₀ $> \in$ Acc(t)^c iff M₀ does not accept <M₀> in time $\leq t(|<$ M₀>|).

- Contradiction!

- Acc(t) = { <M> | M is a basic TM that accepts <M> in ≤ t(|<M>|) steps }.
- We have proved:
- Theorem: For any computable function t, there is a language that is decidable, but cannot be decided by any basic Turing machine in time t(n).
- Proof:
 - Claim 1: Acc(t) is decidable.
 - Claim 2: Acc(t) is not decided by any basic TM in \leq t(n) steps.
- Thus, for every computable function t(n), no matter how large (exponential, double-exponential,...), there are decidable languages not decidable in time t(n).
- In particular, there are decidable languages not in P.

- Simplified summary, from Sipser Section 9.1.
- Acc(t) = { <M> | M is a basic TM that accepts <M> in ≤ t(|<M>|) steps }
- We have just proved that, for any computable function t, the language Acc(t) is decidable, but cannot be decided by any basic TM in time t(n).
- Q: How much time does it take to compute Acc(t)?
- More than t(n), but how much more?
- Technical assumption: t is "time-constructible", meaning it can be computed in an amount of time that is not much bigger than t itself.
 - Examples: Typical functions, like polynomials, exponentials, double-exponentials,...

- Acc(t) = { <M> | M is a basic TM that accepts <M> in ≤ t(|<M>|) steps }
- Q: How much time does it take to compute Acc(t)?
- Theorem (informal statement): If t is any time-constructible function, then Acc(t) can be decided by a basic TM in time not much bigger than t(n).
 - E.g., approximately $t^2(n)$.
 - Sipser (Theorem 9.10) gives a tighter bound.
- Q: Why exactly does it take much more than t(n) time to run an arbitrary machine M on <M> for t(|<M>|) simulated steps?
- We must simulate an arbitrary machine M using a fixed "universal" TM, with a fixed state set, fixed alphabet, etc.

- Theorem (informal): If t is any time-constructible function, then Acc(t) can be decided by a basic TM in time not much bigger than t(n).
 - E.g., approximately t²(n).
- Implies that there is:
 - A language decidable in time n² but not time n.
 - A language decidable in time n^6 but not time n^3 .
 - A language decidable in time 4ⁿ but not time 2ⁿ.
- Extend this reasoning to show:
 - $\mathsf{TIME}(n) \neq \mathsf{TIME}(n^2) \neq \mathsf{TIME}(n^4) \dots$ $\neq \mathsf{TIME}(2^n) \neq \mathsf{TIME}(4^n) \dots$
- A hierarchy of distinct language classes.

Next time...

• The Midterm!

6.045J / 18.400J Automata, Computability, and Complexity Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.