6.045: Automata, Computability, and Complexity Or, Great Ideas in Theoretical Computer Science Spring, 2010

> Class 10 Nancy Lynch

Today

- Final topic in computability theory: Self-Reference and the Recursion Theorem
- Consider adding to TMs (or programs) a new, powerful capability to "know" and use their own descriptions.
- The Recursion Theorem says that this apparent extra power does not add anything to the basic computability model: these self-referencing machines can be transformed into ordinary non-self-referencing TMs.

Today

- Self-Reference and the Recursion Theorem
- Topics:
 - Self-referencing machines and programs
 - Statement of the Recursion Theorem
 - Applications of the Recursion Theorem
 - Proof of the Recursion Theorem: Special case
 - Proof of the Recursion Theorem: General case
- Reading:
 - Sipser, Section 6.1

Self-referencing machines and programs

Self-referencing machines/programs

- Consider the following program P₁.
- P₁:
 - Obtain $< P_1 >$
 - Output < P₁ >
- P₁ simply outputs its own representation, as a string.
- Simplest example of a machine/program that uses its own description.

Self-referencing machines/programs

- A more interesting example:
- P₂: On input w:
 - If $w = \varepsilon$ then output 0
 - Else
 - Obtain $< P_2 >$
 - Run P₂ on tail(w)
 - If P₂ on tail(w) outputs a number n then output n+1.
- What does P₂ compute?
- It computes |w|, the length of its input.
- Uses the recursive style common in LISP, Scheme, other recursive programming languages.
- We assume that, once we have the representation of a machine, we can simulate it on a given input.
- E.g., if P_2 gets < P_2 >, it can simulate P_2 on any input.

Self-referencing machines/programs

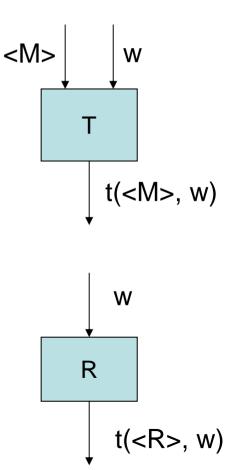
- One more example:
- P₃: On input w:
 - Obtain $< P_3 >$
 - Run P₃ on w
 - If P_3 on w outputs a number n then output n+1.
- A valid self-referencing program.
- What does P₃ compute?
- Seems contradictory: if P₃ on w outputs n then P₃ on w outputs n+1.
- But according to the usual semantics of recursive calls, it never halts, so there's no contradiction.
- P₃ computes a partial function that isn't defined anywhere.

Statement of the Recursion Theorem

- Used to justify self-referential programs like P₁, P₂, P₃, by asserting that they have corresponding (equivalent) basic TMs.
- Recursion Theorem (Sipser Theorem 6.3):
 Let T be a TM that computes a (possibly partial) 2argument function t: Σ* × Σ* → Σ*.

Then there is another TM R that computes the function r: $\Sigma^* \rightarrow \Sigma^*$, where for any w, r(w) = t(<R>, w).

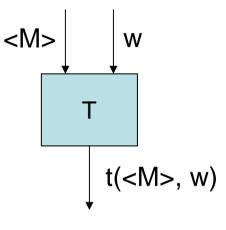
- Recursion Theorem: Let T be a TM that computes a (possibly partial) 2-argument function t: $\Sigma^* \times \Sigma^* \rightarrow \Sigma^*$. Then there is another TM R that computes the function r: $\Sigma^* \rightarrow \Sigma^*$, where for any w, r(w) = t(<R>, w).
- Thus, T is a TM that takes 2 inputs.
- Think of the first as the description of some arbitrary 1-input TM M.
- Then R behaves like T, but with the first input set to <R>, the description of R itself.
- Thus, R uses its own representation.

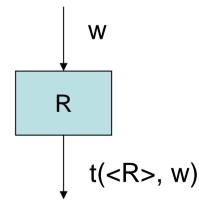


- Recursion Theorem: Let T be a TM that computes a (possibly partial) 2-argument function t: $\Sigma^* \times \Sigma^* \to \Sigma^*$. Then there is another TM R that computes the function r: $\Sigma^* \to \Sigma^*$, where for any w, r(w) = t(<R>, w).
- Example: P₂, revisited
 - Computes length of input.
 - What are T and R?
 - Here is a version of P₂ with an extra input <M>:
 - $-T_2$: On inputs <M> and w:
 - If $w = \varepsilon$ then output 0
 - Else run M on tail(w); if it outputs n then output n+1.

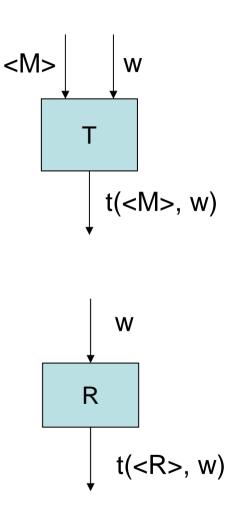
<M> W Т t(<M>, w) W R t(<R>, w

- Example: P₂, revisited
 - $-T_2$: On inputs <M> and w:
 - If $w = \varepsilon$ then output 0
 - Else run M on tail(w); if it outputs n then output n+1.
 - T₂ produces different results, depending on what M does.
 - E.g., if M always loops:
 - T_2 outputs 0 on input w = ϵ and loops on every other input.
 - E.g., if M always halts and outputs 1:
 - T_2 outputs 0 on input w = ε and outputs 2 on every other input.

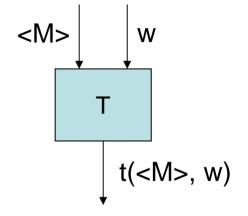




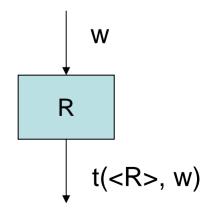
- Example: P₂, revisited
 - $-T_2$: On inputs <M> and w:
 - If $w = \varepsilon$ then output 0
 - Else run M on tail(w); if it outputs n then output n+1.
 - Recursion Theorem says there is a TM R computing t(<R>, w)---just like T₂ but with input <M> set to <R> for the same R.
 - This R is just P_2 as defined earlier.



- Recursion Theorem (Sipser Theorem 6.3):
 - Let T be a TM that computes a (possibly partial) 2-argument function t: $\Sigma^* \times \Sigma^* \rightarrow \Sigma^*$.



Then there is another TM R that computes the function r: $\Sigma^* \rightarrow \Sigma^*$, where for any w, r(w) = t(<R>, w).



Applications of the Recursion Theorem

Applications of Recursion Theorem

- The Recursion Theorem can be used to show various negative results, e.g., undecidability results.
- Application 1: Acc_{TM} is undecidable
 - We already know this, but the Recursion Theorem provides a new proof.
 - Suppose for contradiction that D is a TM that decides Acc_{TM} .
 - Construct another machine R using self-reference (justified by the Recursion Theorem):
- R: On input w:
 - Obtain < R > (using Recursion Theorem)
 - Run D on input <R, w> (we can construct <R, w> from <R> and w)
 - Do the opposite of what D does:
 - If D accepts <R, w> then reject.
 - If D rejects <R, w> then accept.

Application 1: Acc_{TM} is undecidable

- Suppose for contradiction that D decides Acc_{TM} .
- R: On input w:
 - Obtain < R >
 - Run D on input <R, w>
 - Do the opposite of what D does:
 - If D accepts <R, w> then reject.
 - If D rejects <R, w> then accept.
- RT says that TM R exists, assuming decider D exists.
- Formally, to apply RT, use the 2-input machine T:
- T: On inputs <M> and w:
 - Run D on input <M, w>
 - Do the opposite of what D does:
 - If D accepts <M, w> then reject.
 - If D rejects <M, w> then accept.

Application 1: Acc_{TM} is undecidable

- Suppose for contradiction that D decides Acc_{TM} .
- R: On input w:
 - Obtain < R >
 - Run D on input <R, w>
 - Do the opposite of what D does:
 - If D accepts <R, w> then reject.
 - If D rejects <R, w> then accept.
- Now get a contradiction:
 - If R accepts w, then
 - D accepts <R, w> since D is a decider for Acc_{TM} , so
 - R rejects w by definition of R.
 - If R does not accept w, then
 - D rejects <R, w> since D is a decider for Acc_{TM} , so
 - R accepts w by definition of R.
- Contradiction. So D can't exist, so Acc_{TM} is undecidable.

Applications of Recursion Theorem

- Application 2: Acc01_{TM} is undecidable
 - Similar to the previous example.
 - Suppose for contradiction that D is a TM that decides $Acc01_{\text{TM}}.$
 - Construct another machine R using the Recursion Theorem:
- R: On input w: (ignores its input)
 - Obtain < R > (using RT)
 - Run D on input <R>
 - Do the opposite of what D does:
 - If D accepts <R> then reject.
 - If D rejects <R> then accept.
- RT says that R exists, assuming decider D exists.

Application 2: Acc01_{TM} is undecidable

- Suppose for contradiction that D decides $Acc01_{TM}$.
- R: On input w:
 - Obtain < R >
 - Run D on input <R>
 - Do the opposite of what D does:
 - If D accepts <R> then reject.
 - If D rejects <R> then accept.
- Now get a contradiction, based on what R does on input 01:
 - If R accepts 01, then
 - D accepts $\langle R \rangle$ since D is a decider for Acc01_{TM}, so
 - R rejects 01 (and everything else), by definition of R.
 - If R does not accept 01, then
 - D rejects $\langle R \rangle$ since D is a decider for Acc01_{TM}, so
 - R accepts 01 (and everything else), by definition of R.
- Contradiction. So D can't exist, so $Acc01_{TM}$ is undecidable.

Applications of Recursion Theorem

- Application 3: Using Recursion Theorem to prove Rice's Theorem
 - Rice's Theorem: Let P be a nontrivial property of Turing-recognizable languages. Let $M_P = \{ < M > | L(M) \in P \}$. Then M_P is undecidable.
 - Nontriviality: There is some M_1 with $L(M_1) \in P$, and some M_2 with $L(M_2) \notin P$.
 - Implies lots of things are undecidable.
 - We already proved this; now, a new proof using the Recursion Theorem.
 - Suppose for contradiction that D is a TM that decides $M_{\rm P}$.
 - Construct machine R using the Recursion Theorem:...

Application 3: Using Recursion Theorem to prove Rice's Theorem

- Rice's Theorem: Let P be a nontrivial property of Turing-recognizable languages. Let $M_P = \{ < M > | L(M) \in P \}$. Then M_P is undecidable.
- Nontriviality: $L(M_1) \in P, L(M_2) \notin P$.
- D decides M_P.
- R: On input w:
 - Obtain < R >
 - Run D on input <R>
 - If D accepts <R> then run M_2 on input w and do the same thing.
 - If D rejects $\langle R \rangle$ then run M₁ on input w and do the same thing.
- M_1 and M_2 are as above, in the nontriviality definition.
- R exists, by the Recursion Theorem.
- Get contradiction by considering whether or not $L(R) \in P$:

Application 3: Using Recursion Theorem to prove Rice's Theorem

- Rice's Theorem: Let P be a nontrivial property of Turing-recognizable languages. Let $M_P = \{ < M > | L(M) \in P \}$. Then M_P is undecidable.
- $L(M_1) \in P, L(M_2) \notin P$.
- D decides M_P.
- R: On input w:
 - Obtain < R >
 - Run D on input <R>
 - If D accepts $\langle R \rangle$ then run M_2 on input w and do the same thing.
 - If D rejects $\langle R \rangle$ then run M_1 on input w and do the same thing.
- Get contradiction by considering whether or not $L(R) \in P$:
 - If $L(R) \in P$, then
 - D accepts <R>, since D decides M_P , so
 - $L(R) = L(M_2)$ by definition of R, so
 - L(R) ∉ P.

Application 3: Using Recursion Theorem to prove Rice's Theorem

- Rice's Theorem: Let P be a nontrivial property of Turing-recognizable languages. Let $M_P = \{ < M > | L(M) \in P \}$. Then M_P is undecidable.
- $L(M_1) \in P, L(M_2) \notin P$.
- D decides M_P.
- R: On input w:
 - Obtain < R >
 - Run D on input <R>
 - If D accepts $\langle R \rangle$ then run M₂ on input w and do the same thing.
 - If D rejects $\langle R \rangle$ then run M_1 on input w and do the same thing.
- Get contradiction by considering whether or not $L(R) \in P$:
 - If L(R) ∉ P, then
 - D rejects <R>, since D decides M_P , so
 - $L(R) = L(M_1)$ by definition of R, so
 - $L(R) \in P$.
- Contradiction!

Applications of Recursion Theorem

- Application 4: Showing non-Turing-recognizability
 - Define MIN_{TM} = { < M > | M is a "minimal" TM, that is, no TM with a shorter encoding recognizes the same language }.
 - Theorem: MIN_{TM} is not Turing-recognizable.
 - Note: This doesn't follow from Rice:
 - Requires non-T-recognizability, not just undecidability.
 - Besides, it's not a language property.
 - Proof:
 - Assume for contradiction that MIN_{TM} is Turing-recognizable.
 - Then it's enumerable, say by enumerator TM E.
 - Define TM R, using the Recursion Theorem:
 - R: On input w: ...

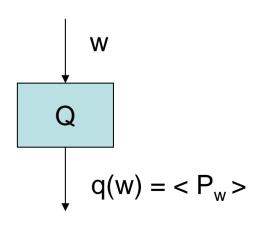
Application 4: Non-Turing-recognizability

- MIN_{TM} = { < M > | M is a "minimal" TM }.
- Theorem: MIN_{TM} is not Turing-recognizable.
- Proof:
 - Assume that MIN_{TM} is Turing-recognizable.
 - Then it's enumerable, say by enumerator TM E.
 - R: On input w:
 - Obtain <R>.
 - Run E, producing list $< M_1 >$, $< M_2 >$, ... of all minimal TMs, until you find some $< M_i >$ with $|< M_i >|$ strictly greater than |< R >|.
 - That is, until you find a TM with a rep bigger than yours.
 - Run M_i(w) and do the same thing.
 - Contradiction:
 - $L(R) = L(M_i)$
 - | < R > | less than $| < M_i > |$
 - Therefore, M_i is not minimal, and should not be in the list.

Proof of the Recursion Theorem: Special case

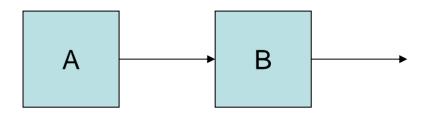
Proof of Recursion Theorem: Special Case

- Start with easier first step: Produce a TM corresponding to P₁:
- P₁:
 - Obtain $< P_1 >$
 - Output $< P_1 >$
- P₁ outputs its own description.
- Lemma: (Sipser Lemma 6.1): There is a computable function q: $\Sigma^* \rightarrow \Sigma^*$ such that, for any string w, q(w) is the description of a TM P_w that just prints out w and halts.
- Proof: Straightforward construction. Can hard-wire w in the FSC of P_w.



Proof of RT: Special Case

- Lemma: (Sipser Lemma 6.1): There is a computable function q: Σ* → Σ* such that, for any string w, q(w) is the description of a TM P_w that just prints out w and halts.
- Now, back to the machine that outputs its own description...
- Consists of 2 sub-machines, A and B.



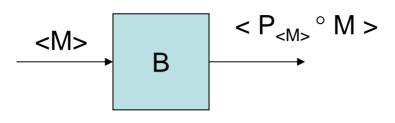
W

 $q(w) = < P_{w} >$

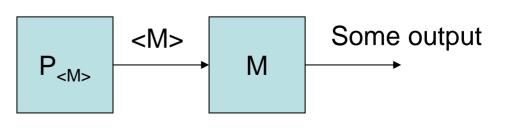
 \mathbf{O}

- Output of A feeds into B.
- Write as A ° B.

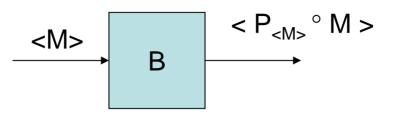
Construction of B



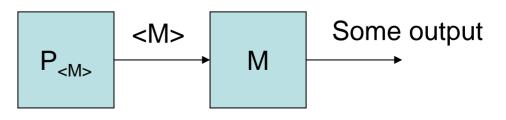
- B expects its input to be the representation <M> of a 1input TM (a function-computing TM, not a language recognizer).
 - If not, we don't care what B does.
- B outputs the encoding of the combination of two machines, $P_{<M>}$ and M.
- The first machine is $P_{<M>}$, which simply outputs <M>.
- The second is the input machine M.
- P_{<M>} ° M:



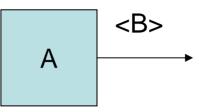
Construction of B



- How can B generate $< P_{<M>} \circ M > ?$
 - B can generate a description of $\rm P_{<M>}$, that is, $<\!P_{<M>}\!>$, by Lemma 6.1.
 - B can generate a description of M, that is, <M>, since it already has <M> as its input.
 - Once B has descriptions of P_{<M>} and M, it can combine them into a single description of the combined machine P_{<M>} ° M, that is, < P_{<M>} ° M >.

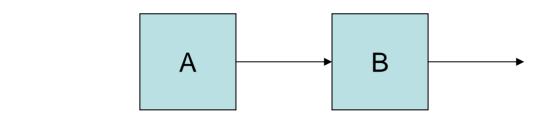


Construction of A



- A is P_{}, the machine that just outputs , where B is the complicated machine constructed above.
- A has no input, just outputs .

Combining the Pieces



- Claim A $^{\circ}$ B outputs its own description, which is < A $^{\circ}$ B >.
- Check this...

• A ° B:

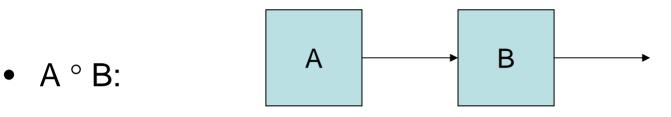
• A is $P_{\langle B \rangle}$, so the output from A to B is $\langle B \rangle$:

$$A = P_{\langle B \rangle} \xrightarrow{\langle B \rangle} B$$

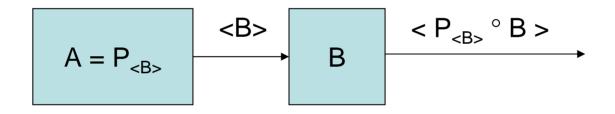
• Substituting B for M in B's output:

$$A = P_{\langle B \rangle} \xrightarrow{\langle B \rangle} B \xrightarrow{\langle P_{\langle B \rangle} \circ B \rangle}$$

Combining the Pieces



• Claim A $^{\circ}$ B outputs its own description, which is < A $^{\circ}$ B >.

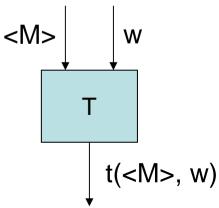


- The output of A $^{\circ}$ B is, therefore, < P_{} $^{\circ}$ B > = < A $^{\circ}$ B >.
- As needed!
- A $^{\circ}$ B outputs its own description, < A $^{\circ}$ B >.

Proof of the Recursion Theorem: General case

Proof of the RT: General case

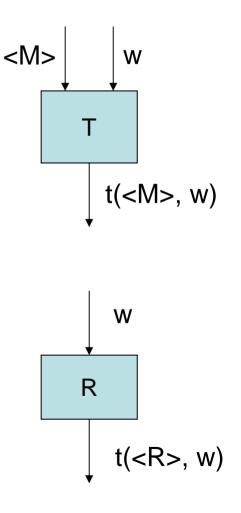
- So, we have a machine that outputs its own description.
- A curiosity---this is not the general RT.
- RT says not just that:
 - There is a TM that outputs its own description.
- But that:
 - There are TMs that can use their own descriptions, in "arbitrary ways".
- The "arbitrary ways" are captured by the machine T in the RT statement.



Recursion Theorem:

Let T be a TM that computes a (possibly partial) 2-argument function t: $\Sigma^* \times \Sigma^* \rightarrow \Sigma^*$.

Then there is another TM R that computes the function r: $\Sigma^* \rightarrow \Sigma^*$, where for any w, r(w) = t(<R>, w).

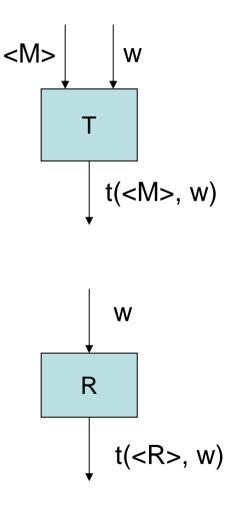


• Recursion Theorem:

Let T be a TM that computes a (possibly partial) 2-argument function t: $\Sigma^* \times \Sigma^* \rightarrow \Sigma^*$.

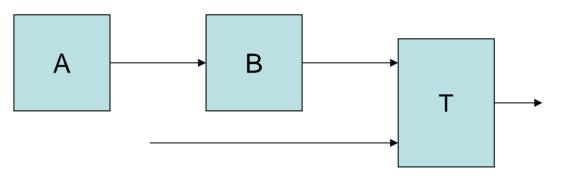
Then there is another TM R that computes the function r: $\Sigma^* \rightarrow \Sigma^*$, where for any w, r(w) = t(<R>, w).

- Construct R from:
 - The given T, and
 - Variants of A and B from the specialcase proof.



Proof of RT: General Case

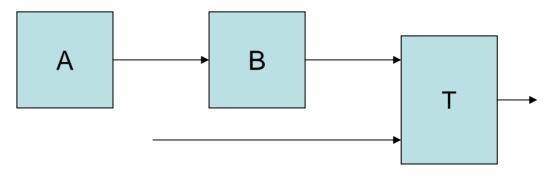
• R looks like:



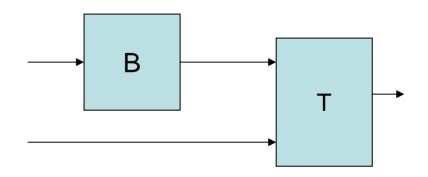
- Write this as (A ° B) °¹ T
 - The °¹ means that the output from (A ° B) connects to the first (top) input line of T.

Proof of RT: General Case

• R = (A ° B) °¹ T

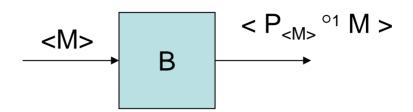


• New A: $P_{<B^{\circ 1}T>}$, where $B^{\circ 1}T$ means:

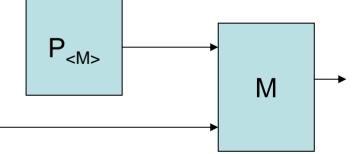


Proof of RT: General Case

• New B:

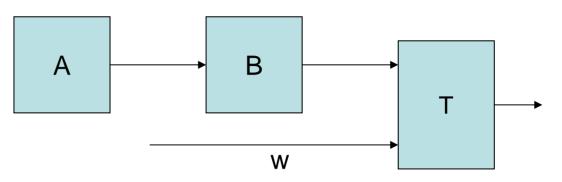


- Like B in the special case, but now M is a 2input TM.
- $P_{<M>}$ °¹ M: 1-input TM, which uses output of $P_{<M>}$ as first input of M.

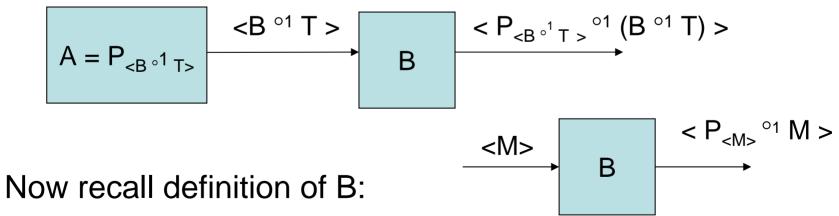


Combining the Pieces

• R = (A ° B) °¹ T

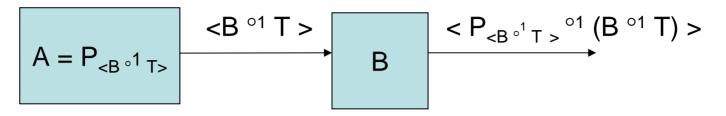


- Claim R outputs t(<R>, w):
- A is $P_{<B^{\circ 1}T>}$, so the output from A to B is $<B^{\circ 1}T>$:

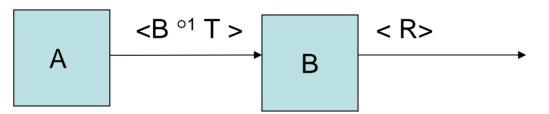


• Plug in B °1 T for M in B's input, and obtain output for B.

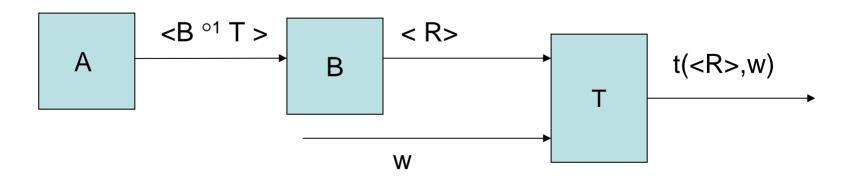
Combining the Pieces

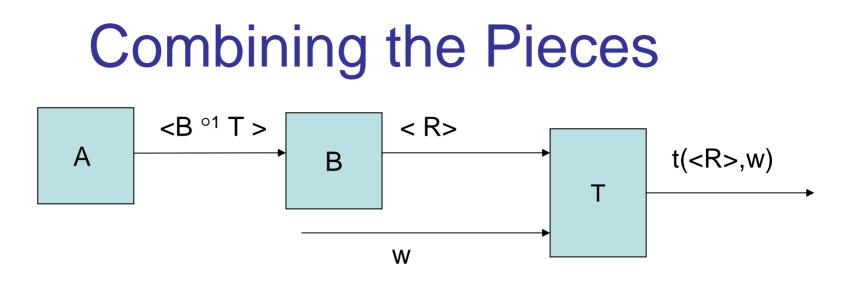


• B's output = < A °1 (B °1 T) > = < R >:

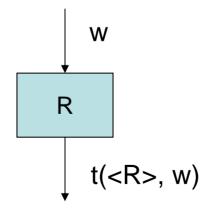


• Now combine with T, plugging in R for M in T's input:





 Thus, R = (A ° B) °¹ T, on input w, produces t(<R>,w), as needed for the Recursion Theorem.



Next time...

- More on computability theory
- Reading:
 - "Computing Machinery and Intelligence" by Alan Turing:

http://www.loebner.net/Prizef/TuringArticle.html

6.045J / 18.400J Automata, Computability, and Complexity Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.