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Today
• Mapping reducibility and Rice’s Theorem
• We’ve seen several undecidability proofs.
• Today we’ll extract some of the key ideas of those 

proofs and present them as general, abstract 
definitions and theorems.

• Two main ideas:
– A formal definition of reducibility from one language to 

another.  Captures many of the reduction arguments we 
have seen.

– Rice’s Theorem, a general theorem about undecidability 
of properties of Turing machine behavior (or program 
behavior).



Today
• Mapping reducibility and Rice’s Theorem
• Topics:

– Computable functions.
– Mapping reducibility, ≤m

– Applications of ≤m to show undecidability and non-
recognizability of languages.

– Rice’s Theorem
– Applications of Rice’s Theorem

• Reading:
– Sipser Section 5.3, Problems 5.28-5.30.



Computable Functions



Computable Functions
• These are needed to define mapping reducibility, ≤m.
• Definition: A function f: Σ1* → Σ2* is computable if there is 

a Turing machine (or program) such that, for every w in 
Σ1*, M on input w halts with just f(w) on its tape.

• To be definite, use basic TM model, except replace qacc
and qrej states with one qhalt state.

• So far in this course, we’ve focused on accept/reject 
decisions, which let TMs decide language membership.

• That’s the same as computing functions from Σ* to              
{ accept, reject }.

• Now generalize to compute functions that produce strings.



Total vs. partial computability
• We require f to be total = defined for every string.
• Could also define partial computable (= partial 

recursive) functions, which are defined on some 
subset of Σ1*.  

• Then M should not halt if f(w) is undefined.



Computable functions
• Example 1:  Computing prime numbers.

– f: { 0, 1 }* → { 0, 1 }* 
– On input w that is a binary representation of positive 

integer i, result is the standard binary representation of 
the ith prime number.

– On inputs representing 0, result is the empty string ε.
• Probably don’t care what the result is in this case, but totality 

requires that we define something.
– For instance:

• f(ε) = f(0) = f(00) = ε
• f(1) = f(01) = f(001) = 10 (binary rep of 2, first prime)
• f(10) = f(010) = 11 (3, second prime)
• f(11) = 101 (5, third prime)
• f(100) = 111 (7, fourth prime)

– Computable, e.g., by sieve algorithm.



Computable functions
• Example 2:  Reverse machine.

– f: { 0, 1 }* → { 0, 1 }* 
– On input w = < M >, where M is a (basic) Turing 

machine, f(w) = < M′ >, where M′ is a Turing machine 
that accepts exactly the reverses of the words accepted 
by M.

– L(M′) = { wR | w ∈ L(M) }
– On inputs w that don’t represent TMs, f(w) = ε.
– Computable:

• M′ reverses its input and then simulates M.
• Can compute description of M′ from description of M.



Computable functions
• Example 3:  Transformations of DFAs, etc.

– We studied several algorithmic transformations 
of DFAs and NFAs:

• NFA → equivalent DFA
• DFA for L → DFA for Lc

• DFA for L → DFA for { wR | w ∈ L }
• Etc.

– All of these transformations can be formalized 
as computable functions (from machine 
representations to machine representations)



Mapping Reducibility



Mapping Reducibility 
• Definition: Let A ⊆ Σ1*, B ⊆ Σ2* be languages.  Then A is 

mapping-reducible to B, A ≤m B, provided that there is a 
computable function f: Σ1* → Σ2* such that, for every string 
w in Σ1*, w ∈ A if and only if f(w) ∈ B.

• Two things to show for “if and only if”:

• We’ve already seen many instance of ≤m in the reductions 
we’ve used to prove undecidability and non-recognizability, 
e.g.:

A

Σ1*

B

Σ2*
f

f



Mapping reducibility examples
• Example:  AccTM ≤m Acc01TM

• <M, w> → <M′M,w>, by computable function f.
• M′M,w behaves as follows:  If M accepts w then it accepts 

everything; otherwise it accepts nothing.
• This f demonstrates mapping reducibility because:

– If <M, w> ∈ AccTM then <M′M,w> ∈ Acc01TM.
– If <M, w> ∉ AccTM then <M′M,w> ∉ Acc01TM.
– Thus, we have “if and only if”, as needed.
– And f is computable.

• Technicality:  Must also map inputs not of the form <M, w> 
somewhere.

Accepts the string 01, possibly others



Mapping reducibility examples
• Example:  AccTM ≤m (ETM)c

• <M, w> → <M′M,w>, by computable function f.
• Use same f as before:  If M accepts w then M′M,w accepts 

everything; otherwise it accepts nothing.
• But now we must show something different:

– If <M, w> ∈ AccTM then <M′M,w> ∈ (ETM)c.
• Accepts something, in fact, accepts everything.

– If <M, w> ∉ AccTM then <M′M,w> ∈ ETM.
• Accepts nothing.

– f is computable.
• Note:  We didn’t show AccTM ≤m ETM.

– Reversed the sense of the answer (took the complement).

Nonemptiness, { M | M accepts some string}



Mapping reducibility examples
• Example:  AccTM ≤m REGTM.

• <M, w> → <M′M,w>, by computable function f.
• We defined f so that:  If M accepts w then M′M,w

accepts everything; otherwise it accepts exactly 
the strings of the form 0n1n, n ≥ 0.

• So <M, w> ∈ AccTM
iff M′M,w accepts a regular language 
iff <M′M,w> ∈ REGTM.

TMs accepting a regular language



Mapping reducibility examples
• Example:  AccTM ≤m MPCP.

• <M, w> → <TM,w, tM,w>, by computable function f, where 
<TM,w, tM,w> is an instance of MPCP (set of tiles + 
distinguished tile). 

• We defined f so that <M, w> ∈ AccTM
iff TM,w has a match starting with tM,w
iff <TM,w, tM,w> ∈ MPCP

• Example:  AccTM ≤m PCP.
• <M, w> → < TM,w> where <M, w> ∈ AccTM iff TM,w has a 

match iff < TM,w> ∈ PCP.

Modified Post Correspondence Problem



Basic Theorems about ≤m
• Theorem 1: If A ≤m B and B is Turing-decidable 

then A is Turing-decidable.
• Proof:

– To decide if w ∈ A:
• Compute f(w)

– Can be done by a TM, since f is computable.
• Decide whether f(w) ∈ B.

– Can be done by a TM, since B is decidable.
• Output the answer.

• Corollary 2: If A ≤m B and A is undecidable then B 
is undecidable.

• So undecidability of AccTM implies undecidability of 
ETM, REGTM, MPCP, etc.



Basic Theorems about ≤m
• Theorem 3: If A ≤m B and B is Turing-recognizable 

then A is Turing-recognizable.
• Proof: On input w:

– Compute f(w).
– Run a TM that recognizes B on input f(w).
– If this TM ever accepts, accept.

• Corollary 4: If A ≤m B and A is not Turing-
recognizable then B is not Turing-recognizable.

• Theorem 5: A ≤m B  if and only if Ac ≤m Bc.
• Proof: Use same f.
• Theorem 6: If A ≤m B and B ≤m C then A ≤m C.
• Proof: Compose the two functions.



Basic Theorems about ≤m

• Theorem 6: If A ≤m B and B ≤m C then A ≤m 
C.

• Example:  PCP
– Showed AccTM ≤m MPCP.
– Showed MPCP ≤m PCP.
– Conclude from Theorem 6 that AccTM ≤m PCP.



More Applications of 
Mapping Reducibility



Applications of ≤m

• We have already used ≤m to show undecidability; 
now use it to show non-Turing-recognizability.

• Example:  Acc01TM
– We already know that Acc01TM is Turing-recognizable.
– Now show that (Acc01TM)c is not Turing-recognizable.
– We showed that AccTM ≤m Acc01TM.
– So (AccTM )c ≤m (Acc01TM)c, by Theorem 5.
– We also already know that (AccTM )c is not Turing 

recognizable.
– So (Acc01TM)c is not Turing-recognizable, by Corollary 4.



Applications of ≤m
• Now an example of a language that is not Turing-

recognizable and whose complement is also not 
Turing-recognizable.

• That is, it’s neither Turing-recognizable nor co-
Turing-recognizable.

• Example:  EQTM = { < M1, M2 > | M1 and M2 are 
TMs and L(M1) = L(M2) }
– Important in practice, e.g.:

• Compare two versions of the “same” program.
• Compare the result of a compiler optimization to the original un-

optimized compiler output.

• Theorem 7: EQTM is not Turing-recognizable.
• Theorem 8: (EQTM)c is not Turing-recognizable.



Applications of ≤m
• EQTM = { < M1, M2 > |  L(M1) = L(M2) }
• Theorem 7: EQTM is not Turing-recognizable.
• Proof:

– Show (AccTM )c ≤m EQTM and use Corollary 4. 
• Already showed (AccTM )c is not Turing-recognizable.

– Equivalently, show AccTM  ≤m (EQTM)c. 
• Equivalent by Theorem 5.

– Need:

– Accepting iff not equivalent.

AccTM (EQTM)c

f

f



EQTM is not Turing-recognizable.
• AccTM  ≤m (EQTM)c:

• Define f(x) so that x ∈ AccTM  iff f(x)∈ (EQTM)c.
• If x is not of the form <M, w> define f(x) = <M0, M0>, where 

M0 is any particular TM.
• Then x ∉ AccTM and f(x) ∈ EQTM, which fits our 

requirements.
• So now assume that x = <M, w>.
• Then define f(x) = <M1, M2>, where:

– M1 always rejects, and
– M2 ignores its input, runs M on w, and accepts iff M accepts w.

• Claim: x ∈ AccTM  iff f(x)∈ (EQTM)c.

AccTM (EQTM)c

f

f



EQTM is not Turing-recognizable.
• AccTM  ≤m (EQTM)c:

• Assume x = <M, w>, define f(x) = <M1, M2>, where:
– M1 always rejects, and
– M2 ignores its input, runs M on w, and accepts iff M accepts w.

• Claim: x ∈ AccTM  iff f(x)∈ (EQTM)c.
• Proof:

– If x ∈ AccTM, then M accepts w, so M2 accepts everything, so      
<M1, M2>∉EQTM, so <M1, M2> ∈ (EQTM)c.

– If x ∉ AccTM, then M does not accept w, so M2 accepts nothing, so 
<M1, M2>∈EQTM, so <M1, M2> ∉ (EQTM)c.

AccTM (EQTM)c

f

f



EQTM is not Turing-recognizable.

• Assume x = <M, w>, define f(x) = <M1, M2>, where:
– M1 always rejects, and
– M2 ignores its input, runs M on w, and accepts iff M accepts w.

• Claim: x ∈ AccTM  iff f(x)∈ (EQTM)c.
• Therefore, AccTM  ≤m (EQTM)c using f.
• So (AccTM )c ≤m EQTM by Theorem 5.
• So EQTM is not Turing-recognizable, by Corollary 4.

AccTM (EQTM)c

f

f



Applications of ≤m
• We have proved:
• Theorem 7: EQTM is not Turing-recognizable.
• It turns out that the complement isn’t T-recognizable either!
• Theorem 8: (EQTM)c is not Turing-recognizable.
• Proof: Show (AccTM )c ≤m (EQTM)c and use Corollary 4. 

• We know (AccTM )c is not Turing-recognizable.
– Equivalently, show AccTM  ≤m EQTM. 
– Need:

– Accepting iff equivalent.

AccTM EQTM

g

g



(EQTM)c is not Turing-recognizable.
• AccTM  ≤m EQTM:

• Define g(x) so that x ∈ AccTM  iff f(x)∈ EQTM.
• If x is not of the form <M, w> define f(x) = <M0, M0′>, where 

L(M0) ≠ L(M0 ′).
• Then x ∉ AccTM and g(x) ∉ EQTM, as required.
• So now assume x = <M, w>.
• Define g(x) = <M1, M2>, where:

– M1 accepts everything, and
– M2 ignores its input, runs M on w, accepts iff M does (as before).

• Claim: x ∈ AccTM  iff g(x)∈ EQTM.

AccTM EQTM

g

g



(EQTM)c is not Turing-recognizable.
• AccTM  ≤m EQTM:

• Assume x = <M, w>, define g(x) = <M1, M2>, where:
– M1 accepts everything, and
– M2 ignores its input, runs M on w, and accepts iff M does.

• Claim: x ∈ AccTM  iff g(x)∈ EQTM.
• Proof:

– If x ∈ AccTM, then M1 and M2 both accept everything, so <M1, M2> ∈
EQTM.

– If x ∉ AccTM, then M1 accepts everything and M2 accepts nothing, so 
<M1, M2>∉EQTM.

AccTM EQTM

g

g



(EQTM)c is not Turing-recognizable.

• Assume x = <M, w>, define g(x) = <M1, M2>, where:
– M1 accepts everything, and
– M2 ignores its input, runs M on w, and accepts iff M does.

• Claim: x ∈ AccTM  iff g(x)∈ EQTM.
• Therefore, AccTM  ≤m EQTM using g.
• So (AccTM )c ≤m (EQTM)c by Theorem 5.
• So (EQTM)c is not Turing-recognizable, by Corollary 4.

AccTM EQTM

g

g



Rice’s Theorem



Rice’s Theorem
• We’ve seen many undecidability results for properties of 

TMs, e.g., for:
– Acc01TM = { < M > | 01 ∈ L(M) }
– ETM = { < M > | L(M) = ∅ }
– REGTM = { < M > | L(M) is a regular language }

• These are all properties of the language recognized by the 
machine.

• Contrast with:
– { < M > | M never tries to move left off the left end of the tape }
– { < M > | M has more than 20 states }

• Rice’s Theorem says (essentially) that any property of the 
language recognized by a TM is undecidable.

• Very powerful theorem.
• Covers many problems besides the ones above, e.g.:

– { < M > | L(M) is a finite set }
– { < M > | L(M) contains some palindrome }
– …



Rice’s Theorem
• Rice’s Theorem says (essentially) that any property of the 

language recognized by a TM is undecidable.
• Technicality:  Restrict to nontrivial properties.
• Define a set P of languages, to be a nontrivial property of 

Turing-recognizable languages provided that
– There is some TM M1 such that L(M1) ∈ P, and
– There is some TM M2 such that L(M2) ∉ P.

• Equivalently:
– There is some Turing-recognizable language L1 in P, and
– There is some Turing recognizable language L2 not in P.

• Rice’s Theorem: Let P be a nontrivial property of Turing-
recognizable languages.  Let MP = { < M > | L(M) ∈ P }.  
Then MP is undecidable.

• !



Rice’s Theorem
• P is a nontrivial property of T-recog. languages if:

– There is some TM M1 such that L(M1) ∈ P, and
– There is some TM M2 such that L(M2) ∉ P.

• Rice’s Theorem: Let P be a nontrivial property of Turing-
recognizable languages.  Let MP = { < M > | L(M) ∈ P }.  
Then MP is undecidable.

• Proof:
– Show AccTM ≤m MP.
– Suppose WLOG that the empty language does not 

satisfy P, that is, ∅ ∉ P.
– Why is this WLOG?

• Otherwise, work with Pc instead of P.
• Then ∅ ∉ Pc, continue the proof using Pc.
• Conclude that MPc is undecidable.
• Implies that MP is undecidable.



Rice’s Theorem
• Rice’s Theorem: Let P be a nontrivial property of Turing-

recognizable languages.  Let MP = { < M > | L(M) ∈ P }.  
Then MP is undecidable.

• Proof:
– Show AccTM ≤m MP.
– Suppose ∅ ∉ P.
– Need:

– Let M1 be any TM such that L(M1) ∈ P, so < M1 > ∈ MP.
• How do we know such M1 exists?
• Because P is nontrivial.

AccTM MP

f

f



Rice’s Theorem
• Rice’s Theorem: Let P be a nontrivial property of Turing-

recognizable languages.  Let MP = { < M > | L(M) ∈ P }.  
Then MP is undecidable.

• Proof:
– Show AccTM ≤m MP.
– Suppose ∅ ∉ P.
– Need:

– Let M1 be any TM such that L(M1) ∈ P, so < M1 > ∈ MP.
– Let M2 be any TM such that L(M2) =  ∅, so < M2 > ∉ MP.

AccTM MP

f

f



Rice’s Theorem
• Rice’s Theorem: Let P be a nontrivial property.  Then MP = 

{ < M > | L(M) ∈ P } is undecidable.
• Proof:

– Need:

– Let M1 be any TM such that L(M1) ∈ P, so < M1 > ∈ MP.
– Let M2 be any TM such that L(M2) =  ∅, so < M2 > ∉ MP.
– Define f(x):  

• If x isn’t of the form <M, w>, return something ∉ MP, like < M2 >.
• If x = <M, w>, then f(x) = < M′M,w >, where:

– M′M,w:  On input y:
• …

AccTM MP

f

f



Rice’s Theorem
• Proof:

– Show AccTM ≤m MP.

– L(M1) ∈ P, so < M1 > ∈ MP.
– L(M2) =  ∅, so < M2 > ∉ MP.
– Define f(x):  

• If x = <M, w>, then f(x) = < M′M,w >, where:
– M′M,w:  On input y:

• Run M on w.
• If M accepts w then run M1 on y, accept if M1 accepts y.
• (If M doesn’t accept w or M1 doesn’t accept y, loop 

forever.)

• Tricky…

AccTM MP

f

f



Rice’s Theorem
• Proof:

– Show AccTM ≤m MP.

– L(M1) ∈ P, so < M1 > ∈ MP.
– L(M2) =  ∅, so < M2 > ∉ MP.
– If x = <M, w>, then f(x) = < M′M,w >, where:

• M′M,w:  On input y:
– Run M on w.
– If M accepts w then run M1 on y and accept if M1 accepts y.

– Claim x ∈ AccTM if and only if f(x)∈ MP.
• If x = <M, w> ∈ AccTM then L(M′M,w) = L(M1) ∈ P, so f(x) ∈ MP.
• If x = <M, w> ∉ AccTM then L(M′M,w) =  ∅ ∉ P, so f(x) ∉ MP.

– Therefore, AccTM ≤m MP using f.
– So MP is undecidable, by Corollary 2.

AccTM MP

f

f



Rice’s Theorem
• We have proved:
• Rice’s Theorem: Let P be a nontrivial property of Turing-

recognizable languages.  Let MP = { < M > | L(M) ∈ P }.  
Then MP is undecidable.

• Note:
– Rice proves undecidability, doesn’t prove non-Turing-

recognizability.  
– The sets MP may be Turing-recognizable.

• Example:  P = languages that contain 01
– Then MP = { < M > | 01 ∈ L(M) } = Acc01TM.
– Rice implies that MP is undecidable.
– But we already know that MP = Acc01TM  is Turing-recognizable.

• For a given input < M >, a TM/program can simulate M on 01 
and accept iff this simulation accepts.



More Applications of 
Rice’s Theorem



Applications of Rice’s Theorem
• Example 1: Using Rice

– { < M > | M is a TM that accepts at least 37 different 
strings }

– Rice implies that this is undecidable.
– This set = MP, where P = “the language contains at least 

37 different strings”
– P is a language property.
– Nontrivial, since some TM-recognizable languages 

satisfy it and some don’t.



Applications of Rice’s Theorem
• Example 2: Property that isn’t a language 

property and is decidable
– { < M > | M is a TM that has at least 37 states }
– Not a language property, but a property of a machine’s 

structure.
– So Rice doesn’t apply.
– Obviously decidable, since we can determine the 

number of states given the TM description.



Applications of Rice’s Theorem
• Example 3: Another property that isn’t a language 

property and is decidable
– { < M > | M is a TM that runs for at most 37 steps on 

input 01 }
– Not a language property, not a property of a machine’s 

structure.
– Rice doesn’t apply.
– Obviously decidable, since, given the TM description, 

we can just simulate it for 37 steps.



Applications of Rice’s Theorem
• Example 4: Undecidable property for which Rice’s 

Theorem doesn’t work to prove undecidability
– Acc01SQ = { < M > | M is a TM that accepts the string 

01 in exactly a perfect square number of steps }
– Not a language property, Rice doesn’t apply.
– Can prove undecidable by showing Acc01TM ≤m 

Acc01SQ.
• Acc01TM is the set of TMs that accept 01 in any number of 

steps.
• Acc01SQTM is the set of TMs that accept 01 in a perfect square 

number of steps.
– Design mapping f so that M accepts 01 iff f(M) = < M′ > 

where M′ accepts 01 in a perfect square number of 
steps.

– f(<M>) = < M′ > where…



Applications of Rice’s Theorem
• Example 4: Undecidable property for which Rice doesn’t 

work to prove undecidability
– Acc01SQ = { < M > | M is a TM that accepts the string 

01 in exactly a perfect square number of steps }
– Show Acc01TM ≤m Acc01SQ.
– Design f so M accepts 01 iff f(M) = < M′ > where M′

accepts 01 in a perfect square number of steps.
– f(<M>) = < M′ > where:

• M′:  On input x:
– If x ≠ 01, then reject.
– If x = 01, then simulate M on 01.  If M accepts 01, then 

accept, but just after doing enough extra steps to ensure 
that the total number of steps is a perfect square.

– <M> ∈ Acc01TM iff M′ accepts 01 in a perfect square 
number of steps, iff f(<M>) ∈Acc01SQ.

– So Acc01TM ≤m Acc01SQ, so Acc01SQ is undecidable.



Applications of Rice’s Theorem
• Example 5: Trivial language property

– { < M > | M is a TM and L(M) is recognized by some TM 
having an even number of states }

– This is a language property.
– So it might seem that Rice should apply…
– But, it’s a trivial language property:  Every Turing-

recognizable language is recognized by some TM 
having an even number of states.

• Could always add an extra, unreachable state.
– Decidable or undecidable?
– Decidable (of course), since it’s the set of all TMs.



Applications of Rice’s Theorem
• Example 6:

– { < M > | M is a TM and L(M) is recognized by some TM 
having at most 37 states and at most 37 tape symbols }

– A language property.
– Is it nontrivial?
– Yes, some languages satisfy it and some don’t.
– So Rice applies, showing that it’s undecidable.
– Note:  This isn’t { < M > | M is a TM that has at most 37 

states and at most 37 tape symbols }
• That’s decidable.

– What about { < M > | M is a TM and L(M) is recognized 
by some TM having at least 37 states and at least 37 
tape symbols }?

• Trivial---all Turing-recognizable languages are recognized by 
some such machine.



Next time…

• The Recursion Theorem
• Reading:

– Sipser Section 6.1
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