6.045: Automata, Computability, and Complexity Or, Great Ideas in Theoretical Computer Science Spring, 2010

> Class 9 Nancy Lynch

Today

- Mapping reducibility and Rice's Theorem
- We've seen several undecidability proofs.
- Today we'll extract some of the key ideas of those proofs and present them as general, abstract definitions and theorems.
- Two main ideas:
 - A formal definition of reducibility from one language to another. Captures many of the reduction arguments we have seen.
 - Rice's Theorem, a general theorem about undecidability of properties of Turing machine behavior (or program behavior).

Today

- Mapping reducibility and Rice's Theorem
- Topics:
 - Computable functions.
 - Mapping reducibility, \leq_m
 - Applications of \leq_m to show undecidability and non-recognizability of languages.
 - Rice's Theorem
 - Applications of Rice's Theorem
- Reading:
 - Sipser Section 5.3, Problems 5.28-5.30.

Computable Functions

Computable Functions

- These are needed to define mapping reducibility, \leq_m .
- **Definition:** A function f: $\Sigma_1^* \to \Sigma_2^*$ is computable if there is a Turing machine (or program) such that, for every w in Σ_1^* , M on input w halts with just f(w) on its tape.
- To be definite, use basic TM model, except replace q_{acc} and q_{rej} states with one q_{halt} state.
- So far in this course, we've focused on accept/reject decisions, which let TMs decide language membership.
- That's the same as computing functions from Σ^* to { accept, reject }.
- Now generalize to compute functions that produce strings.

Total vs. partial computability

- We require f to be total = defined for every string.
- Could also define partial computable (= partial recursive) functions, which are defined on some subset of Σ_1^* .
- Then M should not halt if f(w) is undefined.

Computable functions

- Example 1: Computing prime numbers.
 - f: { 0, 1 }* \rightarrow { 0, 1 }*
 - On input w that is a binary representation of positive integer i, result is the standard binary representation of the ith prime number.
 - On inputs representing 0, result is the empty string ϵ .
 - Probably don't care what the result is in this case, but totality requires that we define something.
 - For instance:
 - $f(\varepsilon) = f(0) = f(00) = \varepsilon$
 - f(1) = f(01) = f(001) = 10 (binary rep of 2, first prime)
 - f(10) = f(010) = 11 (3, second prime)
 - f(11) = 101 (5, third prime)
 - f(100) = 111 (7, fourth prime)
 - Computable, e.g., by sieve algorithm.

Computable functions

- Example 2: Reverse machine.
 - f: { 0, 1 }* \rightarrow { 0, 1 }*
 - On input w = < M >, where M is a (basic) Turing machine, f(w) = < M' >, where M' is a Turing machine that accepts exactly the reverses of the words accepted by M.
 - $\ L(M') = \{ \ w^{\mathsf{R}} \ | \ w \, \in \, L(M) \ \}$
 - On inputs w that don't represent TMs, $f(w) = \varepsilon$.
 - Computable:
 - M' reverses its input and then simulates M.
 - Can compute description of M' from description of M.

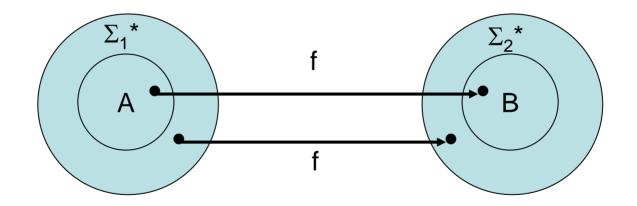
Computable functions

- Example 3: Transformations of DFAs, etc.
 - We studied several algorithmic transformations of DFAs and NFAs:
 - NFA \rightarrow equivalent DFA
 - DFA for $L \rightarrow DFA$ for L^c
 - DFA for $L \rightarrow DFA$ for $\{ w^R \mid w \in L \}$
 - Etc.
 - All of these transformations can be formalized as computable functions (from machine representations to machine representations)

Mapping Reducibility

Mapping Reducibility

- Definition: Let A ⊆ Σ₁*, B ⊆ Σ₂* be languages. Then A is mapping-reducible to B, A ≤_m B, provided that there is a computable function f: Σ₁* → Σ₂* such that, for every string w in Σ₁*, w ∈ A if and only if f(w) ∈ B.
- Two things to show for "if and only if":



 We've already seen many instance of ≤_m in the reductions we've used to prove undecidability and non-recognizability, e.g.:

• Example: $Acc_{TM} \leq_m Acc01_{TM}$

Accepts the string 01, possibly others

- $<M, w > \rightarrow <M'_{M,w} >$, by computable function f.
- M'_{M,w} behaves as follows: If M accepts w then it accepts everything; otherwise it accepts nothing.
- This f demonstrates mapping reducibility because:
 - If <M, w> \in Acc_{TM} then <M'_{M,w}> \in Acc01 $_{TM}.$
 - If <M, w> \notin Acc_{TM} then <M'_{M,w}> \notin Acc01_{TM}.
 - Thus, we have "if and only if", as needed.
 - And f is computable.
- Technicality: Must also map inputs not of the form <M, w> somewhere.

• Example: $Acc_{TM} \leq_m (E_{TM})^c$

Nonemptiness, { M | M accepts some string}

- <M, w> \rightarrow <M'_{M,w}>, by computable function f.
- Use same f as before: If M accepts w then M'_{M,w} accepts everything; otherwise it accepts nothing.
- But now we must show something different:
 - If <M, w> \in Acc_{TM} then <M'_{M,w}> \in (E_{TM})^c.
 - Accepts something, in fact, accepts everything.
 - If <M, w> \notin Acc_{TM} then <M'_{M,w}> \in E_{TM}.
 - Accepts nothing.
 - f is computable.
- Note: We didn't show $Acc_{TM} \leq_m E_{TM}$.
 - Reversed the sense of the answer (took the complement).

• Example: $Acc_{TM} \leq_m REG_{TM}$.

TMs accepting a regular language

- <M, w> \rightarrow <M'_{M,w}>, by computable function f.
- We defined f so that: If M accepts w then $M'_{M,w}$ accepts everything; otherwise it accepts exactly the strings of the form 0^n1^n , $n \ge 0$.
- So <M, w> \in Acc_{TM}

 $\label{eq:massed_matrix} \begin{array}{l} \mbox{iff $M'_{M,w}$} \mbox{accepts a regular language} \\ \mbox{iff $<\!M'_{M,w}\!\!> \in $\mathsf{REG}_{\mathsf{TM}}$}. \end{array}$

• Example: $Acc_{TM} \leq_m MPCP$.

Modified Post Correspondence Problem

- $<M, w> \rightarrow <T_{M,w}, t_{M,w}>$, by computable function f, where $<T_{M,w}, t_{M,w}>$ is an instance of MPCP (set of tiles + distinguished tile).
- We defined f so that <M, w> \in Acc_{TM} iff T_{M,w} has a match starting with t_{M,w} iff <T_{M,w}, t_{M,w}> \in MPCP
- Example: $Acc_{TM} \leq_m PCP$.
- <M, w> \rightarrow < T_{M,w}> where <M, w> \in Acc_{TM} iff T_{M,w} has a match iff < T_{M,w}> \in PCP.

Basic Theorems about ≤_m

- Theorem 1: If $A \leq_m B$ and B is Turing-decidable then A is Turing-decidable.
- Proof:
 - To decide if $w \in A$:
 - Compute f(w)
 - Can be done by a TM, since f is computable.
 - Decide whether $f(w) \in B$.
 - Can be done by a TM, since B is decidable.
 - Output the answer.
- Corollary 2: If A ≤_m B and A is undecidable then B is undecidable.
- So undecidability of Acc_{TM} implies undecidability of E_{TM} , REG_{TM}, MPCP, etc.

Basic Theorems about ≤_m

- Theorem 3: If A ≤_m B and B is Turing-recognizable then A is Turing-recognizable.
- **Proof:** On input w:
 - Compute f(w).
 - Run a TM that recognizes B on input f(w).
 - If this TM ever accepts, accept.
- Corollary 4: If $A \leq_m B$ and A is not Turing-recognizable then B is not Turing-recognizable.
- Theorem 5: $A \leq_m B$ if and only if $A^c \leq_m B^c$.
- Proof: Use same f.
- Theorem 6: If $A \leq_m B$ and $B \leq_m C$ then $A \leq_m C$.
- **Proof:** Compose the two functions.

Basic Theorems about ≤_m

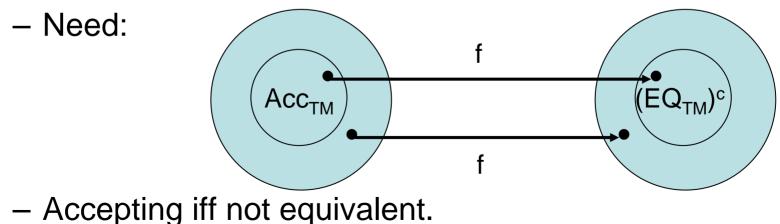
- Theorem 6: If $A \leq_m B$ and $B \leq_m C$ then $A \leq_m C$.
- Example: PCP
 - Showed Acc_{TM} \leq_m MPCP.
 - Showed MPCP \leq_{m} PCP.
 - Conclude from Theorem 6 that $Acc_{TM} \leq_m PCP$.

More Applications of Mapping Reducibility

- We have already used ≤_m to show undecidability; now use it to show non-Turing-recognizability.
- Example: Acc01_{TM}
 - We already know that $Acc01_{TM}$ is Turing-recognizable.
 - Now show that $(Acc01_{TM})^{c}$ is not Turing-recognizable.
 - We showed that $Acc_{TM} \leq_m Acc01_{TM}$.
 - So $(Acc_{TM})^{c} \leq_{m} (Acc01_{TM})^{c}$, by Theorem 5.
 - We also already know that (Acc_{TM})^c is not Turing recognizable.
 - So $(Acc01_{TM})^{c}$ is not Turing-recognizable, by Corollary 4.

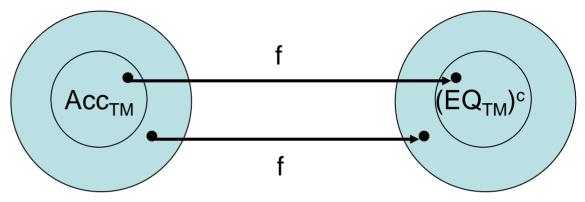
- Now an example of a language that is not Turingrecognizable and whose complement is also not Turing-recognizable.
- That is, it's neither Turing-recognizable nor co-Turing-recognizable.
- Example: EQ_{TM} = { < M₁, M₂ > | M₁ and M₂ are TMs and L(M₁) = L(M₂) }
 - Important in practice, e.g.:
 - Compare two versions of the "same" program.
 - Compare the result of a compiler optimization to the original unoptimized compiler output.
- Theorem 7: EQ_{TM} is not Turing-recognizable.
- Theorem 8: (EQ_{TM})^c is not Turing-recognizable.

- $EQ_{TM} = \{ < M_1, M_2 > | L(M_1) = L(M_2) \}$
- Theorem 7: EQ_{TM} is not Turing-recognizable.
- Proof:
 - Show $(Acc_{TM})^{c} \leq_{m} EQ_{TM}$ and use Corollary 4.
 - Already showed $(Acc_{TM})^c$ is not Turing-recognizable.
 - Equivalently, show $Acc_{TM} \leq_m (EQ_{TM})^c$.
 - Equivalent by Theorem 5.



EQ_{TM} is not Turing-recognizable.

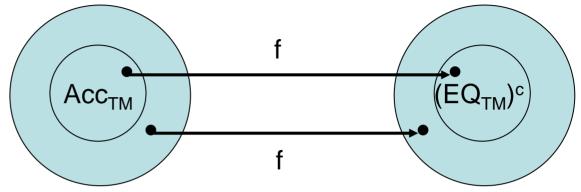
Acc_{TM} ≤_m (EQ_{TM})^c:



- Define f(x) so that $x \in Acc_{TM}$ iff $f(x) \in (EQ_{TM})^c$.
- If x is not of the form <M, w> define f(x) = <M₀, M₀>, where M₀ is any particular TM.
- Then $x \notin Acc_{TM}$ and $f(x) \in EQ_{TM}$, which fits our requirements.
- So now assume that $x = \langle M, w \rangle$.
- Then define $f(x) = \langle M_1, M_2 \rangle$, where:
 - M₁ always rejects, and
 - M₂ ignores its input, runs M on w, and accepts iff M accepts w.
- Claim: $x \in Acc_{TM}$ iff $f(x) \in (EQ_{TM})^{c}$.

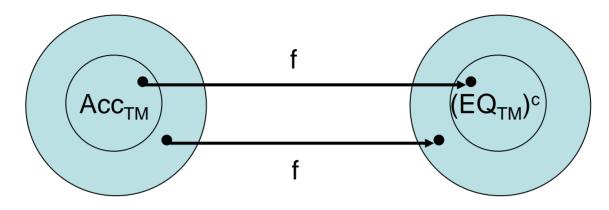
EQ_{TM} is not Turing-recognizable.

• $Acc_{TM} \leq_m (EQ_{TM})^c$:



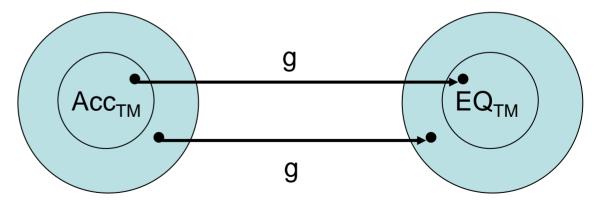
- Assume $x = \langle M, w \rangle$, define $f(x) = \langle M_1, M_2 \rangle$, where:
 - M₁ always rejects, and
 - M₂ ignores its input, runs M on w, and accepts iff M accepts w.
- Claim: $x \in Acc_{TM}$ iff $f(x) \in (EQ_{TM})^{c}$.
- Proof:
 - If $x \in Acc_{TM}$, then M accepts w, so M_2 accepts everything, so $(M_1, M_2) \notin EQ_{TM}$, so $(M_1, M_2) \in (EQ_{TM})^c$.
 - If x ∉ Acc_{TM}, then M does not accept w, so M₂ accepts nothing, so $(M_1, M_2) \in EQ_{TM}$, so $(M_1, M_2) \notin (EQ_{TM})^c$.

EQ_{TM} is not Turing-recognizable.



- Assume $x = \langle M, w \rangle$, define $f(x) = \langle M_1, M_2 \rangle$, where:
 - M₁ always rejects, and
 - M₂ ignores its input, runs M on w, and accepts iff M accepts w.
- Claim: $x \in Acc_{TM}$ iff $f(x) \in (EQ_{TM})^{c}$.
- Therefore, $Acc_{TM} \leq_m (EQ_{TM})^c$ using f.
- So $(Acc_{TM})^{c} \leq_{m} EQ_{TM}$ by Theorem 5.
- So EQ_{TM} is not Turing-recognizable, by Corollary 4.

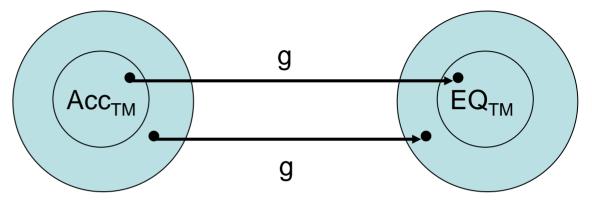
- We have proved:
- Theorem 7: EQ_{TM} is not Turing-recognizable.
- It turns out that the complement isn't T-recognizable either!
- Theorem 8: (EQ_{TM})^c is not Turing-recognizable.
- **Proof**: Show $(Acc_{TM})^{c} \leq_{m} (EQ_{TM})^{c}$ and use Corollary 4.
 - We know $(Acc_{TM})^{c}$ is not Turing-recognizable.
 - Equivalently, show $Acc_{TM} \leq_m EQ_{TM}$.
 - Need:



- Accepting iff equivalent.

$(EQ_{TM})^{c}$ is not Turing-recognizable.

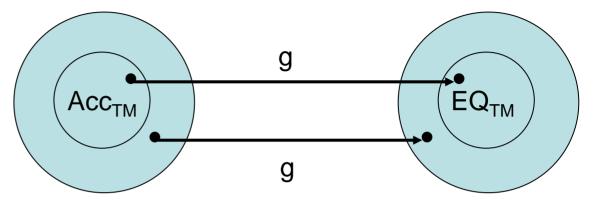
• $Acc_{TM} \leq_m EQ_{TM}$:



- Define g(x) so that $x \in Acc_{TM}$ iff $f(x) \in EQ_{TM}$.
- If x is not of the form <M, w> define $f(x) = <M_0, M_0'>$, where $L(M_0) \neq L(M_0')$.
- Then $x \notin Acc_{TM}$ and $g(x) \notin EQ_{TM}$, as required.
- So now assume x = <M, w>.
- Define $g(x) = \langle M_1, M_2 \rangle$, where:
 - M₁ accepts everything, and
 - M₂ ignores its input, runs M on w, accepts iff M does (as before).
- Claim: $x \in Acc_{TM}$ iff $g(x) \in EQ_{TM}$.

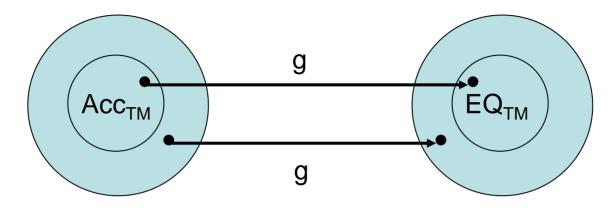
$(EQ_{TM})^{c}$ is not Turing-recognizable.

• $Acc_{TM} \leq_m EQ_{TM}$:



- Assume $x = \langle M, w \rangle$, define $g(x) = \langle M_1, M_2 \rangle$, where:
 - M₁ accepts everything, and
 - M₂ ignores its input, runs M on w, and accepts iff M does.
- Claim: $x \in Acc_{TM}$ iff $g(x) \in EQ_{TM}$.
- Proof:
 - If $x \in Acc_{TM_1}$ then M_1 and M_2 both accept everything, so <M_1, M_2 > \ \in EQ_{TM}.
 - If $x \notin Acc_{TM_1}$ then M_1 accepts everything and M_2 accepts nothing, so $<M_1$, $M_2 > \notin EQ_{TM}$.

$(EQ_{TM})^{c}$ is not Turing-recognizable.



- Assume $x = \langle M, w \rangle$, define $g(x) = \langle M_1, M_2 \rangle$, where:
 - M₁ accepts everything, and
 - M₂ ignores its input, runs M on w, and accepts iff M does.
- Claim: $x \in Acc_{TM}$ iff $g(x) \in EQ_{TM}$.
- Therefore, $Acc_{TM} \leq_m EQ_{TM}$ using g.
- So $(Acc_{TM})^{c} \leq_{m} (EQ_{TM})^{c}$ by Theorem 5.
- So (EQ_{TM})^c is not Turing-recognizable, by Corollary 4.

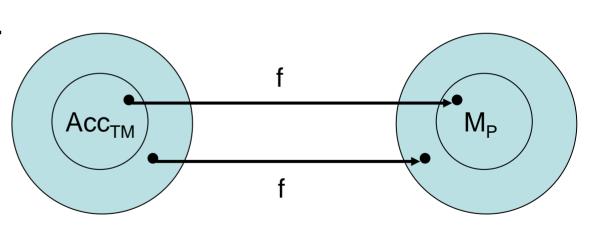
- We've seen many undecidability results for properties of TMs, e.g., for:
 - $\text{ Acc01}_{\text{TM}} = \{ < M > | \text{ 01} \in L(M) \}$
 - $\mathsf{E}_{\mathsf{TM}} = \{ <\mathsf{M} > | \mathsf{L}(\mathsf{M}) = \varnothing \}$
 - $REG_{TM} = \{ < M > | L(M) \text{ is a regular language } \}$
- These are all properties of the language recognized by the machine.
- Contrast with:
 - $\{ < M > | M \text{ never tries to move left off the left end of the tape } \}$
 - $\{ < M > | M has more than 20 states \}$
- Rice's Theorem says (essentially) that any property of the language recognized by a TM is undecidable.
- Very powerful theorem.
- Covers many problems besides the ones above, e.g.:
 - $\{ < M > | L(M) \text{ is a finite set } \}$
 - $\{ < M > | L(M) \text{ contains some palindrome } \}$

— ...

- Rice's Theorem says (essentially) that any property of the language recognized by a TM is undecidable.
- Technicality: Restrict to nontrivial properties.
- Define a set P of languages, to be a nontrivial property of Turing-recognizable languages provided that
 - There is some TM M_1 such that $L(M_1) \in P$, and
 - There is some TM M_2 such that $L(M_2) \notin P$.
- Equivalently:
 - There is some Turing-recognizable language L_1 in P, and
 - There is some Turing recognizable language L_2 not in P.
- Rice's Theorem: Let P be a nontrivial property of Turing-recognizable languages. Let $M_P = \{ < M > | L(M) \in P \}$. Then M_P is undecidable.

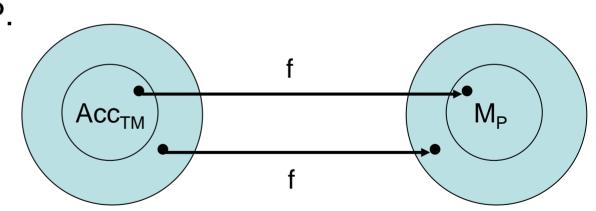
- P is a nontrivial property of T-recog. languages if:
 - There is some TM M_1 such that $L(M_1) \in \mathsf{P},$ and
 - There is some TM M_2 such that $L(M_2) \notin P$.
- Rice's Theorem: Let P be a nontrivial property of Turing-recognizable languages. Let $M_P = \{ < M > | L(M) \in P \}$. Then M_P is undecidable.
- Proof:
 - Show $Acc_{TM} \leq_m M_P$.
 - Suppose WLOG that the empty language does not satisfy P, that is, $\emptyset \notin P$.
 - Why is this WLOG?
 - Otherwise, work with P^c instead of P.
 - Then $\emptyset \notin P^c$, continue the proof using P^c .
 - Conclude that M_{Pc} is undecidable.
 - Implies that M_P is undecidable.

- Rice's Theorem: Let P be a nontrivial property of Turing-recognizable languages. Let $M_P = \{ < M > | L(M) \in P \}$. Then M_P is undecidable.
- Proof:
 - Show $Acc_{TM} \leq_m M_P$.
 - Suppose $\emptyset \notin \mathsf{P}$.
 - Need:



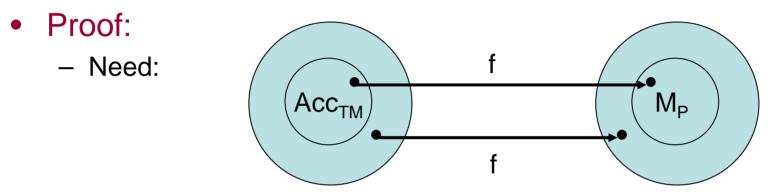
- Let M_1 be any TM such that $L(M_1) \in P$, so $< M_1 > \in M_P$.
 - How do we know such M₁ exists?
 - Because P is nontrivial.

- Rice's Theorem: Let P be a nontrivial property of Turing-recognizable languages. Let $M_P = \{ < M > | L(M) \in P \}$. Then M_P is undecidable.
- Proof:
 - Show $Acc_{TM} \leq_m M_P$.
 - Suppose $\emptyset \notin P$.
 - Need:



- Let M_1 be any TM such that $L(M_1) \in P$, so $< M_1 > \in M_P$.
- Let M_2 be any TM such that $L(M_2) = \emptyset$, so $< M_2 > \notin M_P$.

 Rice's Theorem: Let P be a nontrivial property. Then M_P = { < M > | L(M) ∈ P } is undecidable.



- Let M_1 be any TM such that $L(M_1) \in P$, so $< M_1 > \in M_P$.
- Let M_2 be any TM such that $L(M_2) = \emptyset$, so $< M_2 > \notin M_P$.
- Define f(x):
 - If x isn't of the form <M, w>, return something \notin M_P, like < M₂ >.
 - If $x = \langle M, w \rangle$, then $f(x) = \langle M'_{M,w} \rangle$, where:
 - $M'_{M,w}$: On input y:
 - ...

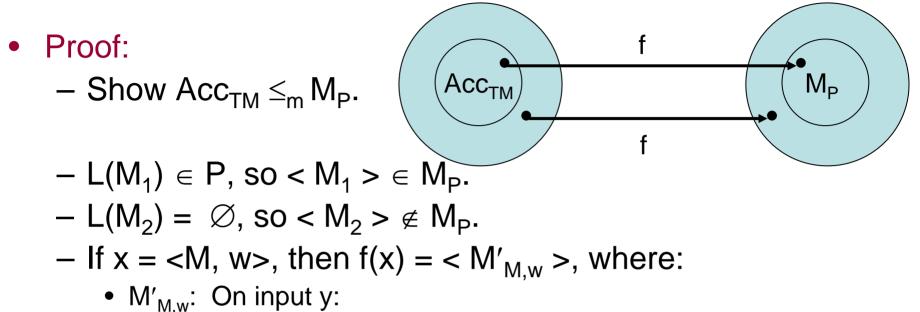
Rice's Theorem

- Proof: - Show $Acc_{TM} \leq_m M_P$. f
 - $-L(M_1) \in P$, so $< M_1 > \in M_P$.

$$- L(M_2) = \emptyset$$
, so $< M_2 > \notin M_P$.

- Define f(x):
 - If $x = \langle M, w \rangle$, then $f(x) = \langle M'_{M,w} \rangle$, where:
 - $M'_{M,w}$: On input y:
 - Run M on w.
 - If M accepts w then run M_1 on y, accept if M_1 accepts y.
 - (If M doesn't accept w or M₁ doesn't accept y, loop forever.)
 - Tricky...

Rice's Theorem



- Run M on w.
- If M accepts w then run M_1 on y and accept if M_1 accepts y.
- Claim $x \in Acc_{TM}$ if and only if $f(x) \in M_P$.
 - If $x = \langle M, w \rangle \in Acc_{TM}$ then $L(M'_{M,w}) = L(M_1) \in P$, so $f(x) \in M_P$.
 - If $x = \langle M, w \rangle \notin Acc_{TM}$ then $L(M'_{M,w}) = \emptyset \notin P$, so $f(x) \notin M_P$.
- Therefore, $Acc_{TM} \leq_m M_P$ using f.
- So M_P is undecidable, by Corollary 2.

Rice's Theorem

- We have proved:
- Rice's Theorem: Let P be a nontrivial property of Turing-recognizable languages. Let $M_P = \{ < M > | L(M) \in P \}$. Then M_P is undecidable.
- Note:
 - Rice proves undecidability, doesn't prove non-Turingrecognizability.
 - The sets M_P may be Turing-recognizable.
- Example: P = languages that contain 01
 - Then M_{P} = { < M > | 01 \in L(M) } = Acc01_{TM}.
 - Rice implies that M_P is undecidable.
 - But we already know that $M_P = Acc01_{TM}$ is Turing-recognizable.
 - For a given input < M >, a TM/program can simulate M on 01 and accept iff this simulation accepts.

- Example 1: Using Rice
 - { < M > | M is a TM that accepts at least 37 different strings }
 - Rice implies that this is undecidable.
 - This set = M_P , where P = "the language contains at least 37 different strings"
 - P is a language property.
 - Nontrivial, since some TM-recognizable languages satisfy it and some don't.

- Example 2: Property that isn't a language property and is decidable
 - $\{ < M > | M \text{ is a TM that has at least 37 states } \}$
 - Not a language property, but a property of a machine's structure.
 - So Rice doesn't apply.
 - Obviously decidable, since we can determine the number of states given the TM description.

- Example 3: Another property that isn't a language property and is decidable
 - { < M > | M is a TM that runs for at most 37 steps on input 01 }
 - Not a language property, not a property of a machine's structure.
 - Rice doesn't apply.
 - Obviously decidable, since, given the TM description, we can just simulate it for 37 steps.

- Example 4: Undecidable property for which Rice's Theorem doesn't work to prove undecidability
 - Acc01SQ = { < M > | M is a TM that accepts the string 01 in exactly a perfect square number of steps }
 - Not a language property, Rice doesn't apply.
 - Can prove undecidable by showing $Acc01_{TM} \leq_m Acc01SQ$.
 - Acc01_{TM} is the set of TMs that accept 01 in any number of steps.
 - Acc01SQ_{TM} is the set of TMs that accept 01 in a perfect square number of steps.
 - Design mapping f so that M accepts 01 iff f(M) = < M' > where M' accepts 01 in a perfect square number of steps.
 - f(<M>) = < M' > where...

- Example 4: Undecidable property for which Rice doesn't work to prove undecidability
 - Acc01SQ = { < M > | M is a TM that accepts the string 01 in exactly a perfect square number of steps }
 - Show Acc01_{TM} \leq_m Acc01SQ.
 - Design f so M accepts 01 iff f(M) = < M' > where M' accepts 01 in a perfect square number of steps.
 - $f(\langle M \rangle) = \langle M' \rangle$ where:
 - M': On input x:
 - If $x \neq 01$, then reject.
 - If x = 01, then simulate M on 01. If M accepts 01, then accept, but just after doing enough extra steps to ensure that the total number of steps is a perfect square.
 - <M> ∈ Acc01_{TM} iff M' accepts 01 in a perfect square number of steps, iff f(<M>) ∈ Acc01SQ.
 - So Acc01_{TM} \leq_m Acc01SQ, so Acc01SQ is undecidable.

- Example 5: Trivial language property
 - { < M > | M is a TM and L(M) is recognized by some TM having an even number of states }
 - This is a language property.
 - So it might seem that Rice should apply...
 - But, it's a trivial language property: Every Turingrecognizable language is recognized by some TM having an even number of states.
 - Could always add an extra, unreachable state.
 - Decidable or undecidable?
 - Decidable (of course), since it's the set of all TMs.

- Example 6:
 - { < M > | M is a TM and L(M) is recognized by some TM having at most 37 states and at most 37 tape symbols }
 - A language property.
 - Is it nontrivial?
 - Yes, some languages satisfy it and some don't.
 - So Rice applies, showing that it's undecidable.
 - Note: This isn't { < M > | M is a TM that has at most 37 states and at most 37 tape symbols }
 - That's decidable.
 - What about { < M > | M is a TM and L(M) is recognized by some TM having at least 37 states and at least 37 tape symbols }?
 - Trivial---all Turing-recognizable languages are recognized by some such machine.

Next time...

- The Recursion Theorem
- Reading:
 - Sipser Section 6.1

6.045J / 18.400J Automata, Computability, and Complexity Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.