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Today
• More undecidable problems:

– About Turing machines:  Emptiness, etc.
– About other things:  Post Correspondence Problem.

• Topics:
– Undecidable problems about Turing machines.
– The Post Correspondence Problem: Definition
– Computation histories
– First proof attempt
– Second attempt:  Undecidability of modified PCP 

(MPCP)
– Finish undecidability of PCP

• Reading: Sipser Sections 4.2, 5.1.



Undecidable Problems about Turing 
Machines



Undecidable Problems about Turing 
Machines

• We already showed that AccTM and HaltTM are not 
Turing-decidable (and their complements are not 
even Turing-recognizable).

• Now consider some other problems:
– Acc01TM = { <M> | M is a TM that accepts the string 01 }
– EmptyTM = { <M> | M is a TM that accepts no strings}
– RegTM = { <M> | M is a TM and L(M) is regular}
– EQTM, equivalence for TMs, = { < M1, M2 > | M1 and M2

are TMs and L(M1) = L(M2) }



Acc01TM
• Acc01TM = { <M> | M accepts the string 01 }
• Theorem 1: Acc01TM is not Turing-decidable.
• This might seem surprising---it seems simpler than 

the general acceptance problem, since it involves 
just one particular string.

• Proof attempt:  
– Try a reduction---show if you could decide Acc01TM  then 

you could decide general acceptance problem AccTM.
– Let R be a TM that decides Acc01TM.; design S to 

decide AccTM.
– S:  On input <M,w>:

• Run R on <M>.
• If R accepts… ???  Gives useful information only if w = 01.
• Doesn’t work.



Acc01TM

• Theorem 1: Acc01TM is not Turing-decidable.
• Proof attempt:  

– Let R be a TM that decides Acc01TM.
– S:  On input <M,w>:

• Run R on <M>.
• If R accepts… ???  
• Doesn’t work.

• How can we use information about what a 
machine does on 01 to help decide what a given 
machine M will do on an arbitrary w?

• Idea: Consider a different machine---modify M.



Acc01TM

• Theorem 1: Acc01TM is not Turing-decidable.
• Proof:  

– Let R be a TM that decides Acc01TM.; design S to 
decide AccTM.

– S:  On input <M,w>:
• Instead of running M on w, S constructs a new machine M′M,w

that depends on M and w.
• M′M,w:  On any input x, ignores x and runs M on w.
• Thus, the new machine is the same as M, but hard-wires in the 

given input w.

– More precisely:



Acc01TM

• Theorem 1: Acc01TM is not Turing-decidable.
• Proof:  

– R decides Acc01TM.; design S to decide AccTM.
– S:  On input <M,w>:

• Step 1:  Construct a new machine <M′M,w >, where
– M′M,w:  On input x:

• Run M on w and accept/reject if M does.

• Step 2:  Run R on <M′M,w >, and accept/reject if R 
does.

– Note that S can construct <M′M,w > 
algorithmically, from inputs M and w.



Acc01TM
• Theorem 1: Acc01TM is not Turing-decidable.
• Proof:  

– R decides Acc01TM.; design S to decide AccTM.
– S:  On input <M,w>:

• Step 1:  Construct a new machine <M′M,w >, where
– M′M,w:  On input x:

• Run M on w and accept/reject if M does.
• Step 2:  Run R on <M′M,w >, and accept/reject if R does.

– Running R on <M′M,w > tells us whether or not M′M,w 
accepts 01.

– Claim: M′M,w accepts 01 if and only if M accepts w.
• M′M,w always behaves the same, ignoring its own input and 

simulating M on w.
• If M′M,w accepts 01 (or anything else), then M accepts w.
• If M accepts w, then M′M,w accepts 01 (and everything else).

– So S gives the right answer for whether M accepts w.



Acc01TM

• Theorem 1: Acc01TM is not Turing-decidable.
• Theorem: Acc01TM is Turing-recognizable.
• Corollary: (Acc01TM )c is not Turing-recognizable.



EmptyTM
• EmptyTM = { <M> | M is a TM and L(M) = ∅}
• Theorem 2:  EmptyTM is not Turing-decidable.
• Proof:

– Reduce AccTM to EmptyTM.
– Modify the given machine M:  Given <M,w>, construct a 

new machine M′ so that asking whether L(M′) = ∅ gives 
the right answer to whether M accepts w:   

– Specifically, M accepts w if and only if L(M′) ≠ ∅.
– Use the same machine M′ as for Acc01TM.
– S:  On input <M,w>:

• Step 1:  Construct < M′M,w > as before, which acts on every 
input just like M on w.

• Step 2:  Ask whether L(M′M,w) = ∅ and output the opposite 
answer.



EmptyTM
• Theorem 2:  EmptyTM is not Turing-decidable.
• Proof:

– Reduce AccTM to EmptyTM.
– S:  On input <M,w>:

• Step 1:  Construct < M′M,w > as before, which acts on every 
input just like M on w.

• Step 2:  Ask whether L(M′M,w) = ∅ and output the opposite 
answer.

– Now M accepts w 
if and only if M′M,w accepts everything
if and only if M′M,w accepts something
if and only if L(M′M,w) ≠ ∅.

– So S decides AccTM, contradiction.
– So EmptyTM is not Turing-decidable.



EmptyTM

• Theorem 2:  EmptyTM is not Turing-decidable.
• Theorem: (EmptyTM)c is Turing-recognizable.
• Proof: On input <M>, run M on all inputs, 

dovetailed, accept if any accept.
• Corollary: EmptyTM is not Turing-recognizable



RegTM
• RegTM = { <M> | M is a TM and L(M) is regular}
• That is, given a TM, we want to know whether its language 

is also recognized by some DFA.
• For some, the answer is yes:  TM that recognizes 0*1*
• For some, no:  TM that recognizes {0n1n | n ≥ 0 }
• We can prove that there is no algorithm to decide whether 

the answer is yes or no.
• Theorem 3:  RegTM is not Turing-decidable.
• Proof:

– Reduce AccTM to RegTM.
– Assume TM R that decides RegTM, design S to decide AccTM.
– S:  On input <M,w>:

• Step 1:  Construct a new machine < M′M,w > that accepts a regular 
language if and only if M accepts w.

• Tricky…



RegTM
• RegTM = { <M> | L(M) is regular }
• Theorem 3:  RegTM is not Turing-decidable.
• Proof:

– Assume R decides RegTM, design S to decide AccTM.
– S:  On input <M,w>:

• Step 1:  Construct a new machine < M′M,w > that accepts a 
regular language if and only if M accepts w.  

– M′M,w:  On input x:
• If x is of the form 0n1n, then accept.
• If x is not of this form, then run M on w and accept if M 

accepts.
• Step 2:  Run R on input < M′M,w >, and accept/reject if R does.



RegTM
• Theorem 3:  RegTM is not Turing-decidable.
• Proof:

– S:  On input <M,w>:
• Step 1:  Construct a new machine < M′M,w > that accepts a 

regular language if and only if M accepts w.  
– M′M,w:  On input x:

• If x is of the form 0n1n, then accept.
• If x is not of this form, then run M on w and accept if M 

accepts.
• Step 2:  Run R on input < M′M,w >, and accept/reject if R does.

– If M accepts w, then M′M,w accepts everything, hence recognizes 
the regular language {0,1}*.

– If M does not accept w, then M′M,w accepts exactly the strings of the 
form 0n1n, which constitute a non-regular language.

– Thus, M accepts w iff M′M,w recognizes a regular language.



And more questions
• Many more questions about what TMs compute can be 

proved undecidable using the same method.
• One more example:  EQTM = {<M1, M2> | M1 and M2 are 

basic TMs that recognize the same language } 
• Theorem 4: EQTM is not Turing-decidable.
• Proof: 

– Reduce EmptyTM to EQTM.
– Assume R is a TM that decides EQTM; design S to decide EmptyTM.
– Define any particular TM M∅ with L(M) = ∅ (M accepts nothing).
– S:  On input <M>:

• Run R on input <M, M∅>; accept/reject if R does.

– R tells whether <M, M∅> ∈ EQTM, that is, whether L(M) = 
L(M∅) = ∅.



An Undecidable Problem not 
involving Turing Machines



Post Correspondence Problem
• A simple string-matching problem.
• Given a finite set of “tile types”, e.g.:

• Is there a nonempty finite sequence of tiles (allowing 
repetitions, and not necessarily using all the tile types) for 
which the concatenation of top strings = concatenation of 
bottom strings?

• Example: or

• No limit on length, but must be finite.
• Call such a sequence a match, or correspondence.
• Post Correspondence Problem (PCP) =                             

{ < T > | T is a finite set of tile types that has a match }

a
a b

c a
a b

b
c

b d
d

a
a b

b d
d

c a
a b

b
c

a
a b

b d
d



Post Correspondence Problem
• Given a finite set of tile types, is there a nonempty finite 

sequence of tiles for which the concatenation of top strings 
= concatenation of bottom strings?

• Call sequence a match, or correspondence.
• Post Correspondence Problem (PCP) =                             

{ < T > | T is a finite set of tile types that has a match }.
• Theorem:  PCP is undecidable.
• Proof:

– Reduce AccTM to PCP.
– Previous reductions involved reducing one question about TMs 

(usually AccTM) to another question about TMs.
– Now we reduce TM acceptance to a question about matching 

strings.
– Do this by encoding TM computations using strings…



Computation Histories



Computation Histories
• Computation History (CH): A formal, stylized way 

of representing the computation of a TM on a 
particular input.

• Configuration:  
– Instantaneous snapshot of the TM’s computation.
– Includes current state, current tape contents, current 

head position.
– Write in standard form:  w1 q w2, where w1 and w2 are 

strings of tape symbols and q is a state.
– Meaning:  

• w1 w2 is the string on the non-blank portion of the tape, perhaps 
part of the blank portion (rest assumed blank).

• w1 is the portion of the string strictly to the left of the head.
• w2 is the portion directly under the head and to the right.
• q is the current state.



Configurations
• Configuration:  

– w1 q w2, where w1 and w2 are strings of tape symbols 
and q is a state.

– Meaning:  
• w1 w2 is the string on the non-blank portion of the tape, perhaps 

part of the blank portion (rest assumed blank).
• w1 is the portion of the string strictly to the left of the head.
• w2 is the portion directly under the head and to the right.
• q is the current state.

• Example: 0011q01 represents TM configuration:

0 0 1 1 0

head

1

FSC in state q



Computation Histories
• TM begins in a starting configuration, of the form q0 w, 

where w is the input string, and moves through a series of 
configurations, following the transition function.

• Computation History of TM M on input w:
– A (finite or infinite) sequence of configs C1, C2, C3, …, Ck,…, where

• C1, C2, … are configurations of M.
• C1 is the starting configuration with input w.
• Each Ci+1 follows from Ci using M’s transition function. 

• Accepting CH: Finite CH ending in accepting configuration.
• Rejecting CH: Finite CH ending in rejecting configuration.
• Represent CH as a string # C1 # C2 # … # Ck #, where # is 

a special separator symbol.
• Claim: M accepts w iff there is an accepting CH of M on w.



Undecidability of PCP:  
First Attempt



First attempt
• Theorem: PCP is undecidable.
• Proof attempt:

– Reduce AccTM to PCP, that is, show that, if we can 
decide PCP, then we can decide AccTM.

– Given <M,w>, construct a finite set TM,w of tile types 
such that TM,w has a match iff M accepts w.

– That is, TM,w has a match iff there is an accepting CH of 
M on w.

– Write the accepting CH twice: 
#  C1 #  C2 #  C3 # … #  Ck #
#  C1 #  C2 #  C3 # … #  Ck #

– Split along boundaries of successive configurations:
#  C1 #  C2 # C3 # … #  Ck #
#  C1 #  C2 # C3 # … #  Ck #



First attempt
• Given <M,w>, construct a finite set TM,w of tile types s.t. 

TM,w has a match iff there is an accepting CH of M on w.
• Write the accepting CH twice, and split along boundaries of 

successive configurations:
#  C1 #  C2 # C3 # … #  Ck #
#  C1 #  C2 # C3 # … #  Ck #

– What tiles do we need?
– Try TM,w =                                                   where

• C1 = starting configuration for M on w,
• Ck = accepting configuration (can assume unique, because we 

can assume accepting machine cleans up its tape).
• Cj follows from Ci by rules of M (one step).

#
# C1

Ck #
#

Ci #
#  Cj



First attempt
– TM,w =                                                   

• C1 = starting configuration for M on w,
• Ck = accepting configuration.
• Cj follows from Ci by rules of M (one step).

• M accepts w iff TM,w has a match.
• But there is a problem:

– TM,w has infinitely many tile types TM,w, because M has infinitely 
many configurations.

– Configuration has tape contents, state, head position---infinitely 
many possibilities.

– Of course, in any particular accepting computation, only finitely 
many configurations appear.

– But we don’t know what these are ahead of time.
– So we can’t pick a single finite set of tiles.

#
# C1

Ck #
#

Ci #
#  Cj



First attempt
• M accepts w iff TM,w has a match.
• But:

– TM,w has infinitely many tile types TM,w, because M has infinitely 
many configurations.

– In any particular accepting computation, only finitely many 
configurations appear.

– But we can’t pick a single finite set of tiles for all computations.
• New insight:  

– Represent infinitely many configurations with finitely many tiles.
– Going from one configuration to the next involves changing only a 

few “local” things:
• State
• Contents of one tape cell
• Position of head, by at most 1 

– So let tiles represent small pieces of configs, not entire configs.



Undecidability of Modified PCP



Undecidability of Modified PCP
• Modified PCP (MPCP): Like PCP, but we’re given 

not just a finite set of tiles, but also a designated 
tile that must start the match.

• MPCP = { <T, t > | T is a finite set of tiles, t is a tile 
in T, and there is a match for T starting with t }.

• Theorem: MPCP is undecidable.
• Later, we remove the requirement to start with t: 
• Theorem: PCP is undecidable.
• Proof:

– By reducing MPCP to PCP.
– If PCP were decidable, MPCP would be also, 

contradiction. 



MPCP is undecidable
• Reduce AccTM to MPCP.
• Given <M,w>, construct (TM,w, tM,w), an instance of 

MPCP.
• 7 kinds of tiles:
• Type 1 tile:

– w = w1 w2 … wn

– q0 w1 w2 … wn is the starting configuration for input w.
– Bottom string is long, but there’s only one tile like this.
– Tile depends on w, which is OK.
– Make this the initial tile tM,w.

#
# q0 w1 w2 … wn #



MPCP is undecidable
• Now consider how M goes from one configuration to 

the next.
• E.g., by moving right:  δ(q,a) = (q′,b,R).
• Config changes using this transition look like (e.g.):  

– w1 w2 q a w3 → w1 w2 b q′ w3.
– Only change is to replace q a by b q′.

• Type 2 tiles:
– For each transition of the form δ(q,a) = (q′,b,R):

q a
b q′



MPCP is undecidable
• E.g., moving left:  δ(q,a) = (q′,b,L).
• Type 3 tile:

– For each transition of the form δ(q,a) = (q′,b,L), and 
every symbol c in the tape alphabet  Γ:

– Include arbitrary c because it could be anything.

• Notice, only finitely many tiles (so far).

c  q a
q′ c b



MPCP is undecidable
• Now, to match unchanged portions of 2 

consecutive configurations:
• Type 4 tile:

– For every symbol a in the tape alphabet  Γ:

• Still only finitely many tiles.

a
a



MPCP is undecidable
• What can we do with the tiles we have so far?
• Example:  Partial match

– Suppose the starting configuration is q0 1 1 0 and the 
first move is (q0, 1) → (q4, 0, R).

– Then the next configuration is 0 q4 1 0.
– We can start the match with tile 1:

– Continue with type 2 tile:

– Use type 4 tiles for the 2 unchanged symbols:
– Yields:   #  q0 1  1  0  #

#  q0 1  1  0  #  0  q4 1  0  #

#
# q0 110 #

q0 1
0  q4

1
1

0
0



MPCP is undecidable
• Now we put in the separators.
• Type 5 tiles:

• Example:  Extend previous match:
#  q0 1  1  0  #

#  q0 1  1  0  #  0  q4 1  0  #

#
#

#
-- #

Allows us to add extra spaces at right end 
as needed---lets the configuration size grow.



MPCP is undecidable
• How does this end?
• Type 6 tiles:

– For every a in Γ: 
– A trick…
– Adds “pseudo-steps” to the end of the computation, 

where the state “eats” adjacent symbols in the top row.
– Yields one symbol less in each successive bottom 

configuration.
– Do this until the remaining bottom “configuration” is qacc #:

… #  … #

… #  … #  qacc #

a qacc
qacc

qacc a
qacc



MPCP is undecidable
• To finish off:
• Type 7 tile:

• That completes the definition of TM,w and tM,w.
• Note that TM,w, for a given M and w, is a finite set 

of tiles.

qacc # #
#



MPCP is undecidable
• That completes the definition of TM,w and tM,w.
• Note that TM,w, for a given M and w, is a finite set 

of tiles.
• Why does this work?
• Must show:

– If M accepts w, then TM,w has a match beginning with 
tM,w, that is, <TM,w, tM,w> ∈ MPCP.

– If <TM,w, tM,w> ∈ MPCP, then M accepts w.

• If M accepts w, then there is an accepting 
computation history, which can be described by a 
match using the given tiles, starting from the 
distinguished initial tile:



MPCP is undecidable
• If M accepts w, then there is an accepting computation 

history, which can be described by a match using the given 
tiles, starting from the distinguished initial tile:

#  C1 #  C2 #  C3 # … #  Ck #  Ck+1 # … # qacc a #  qacc #  #

#  C1 #  C2 #  C3 # … #  Ck #  Ck+1 # … # qacc a #  qacc #  # 

Accepting 
configuration Shrink by 

one symbol
Keep
shrinking

Final,
special
tile

• So TM,w has a match beginning with tM,w, that is, <TM,w, tM,w> 
∈ MPCP.



MPCP is undecidable
• If <TM,w, tM,w> ∈ MPCP, that is, if TM,w has a match 

beginning with the designated tile tM,w, then M 
accepts w.

• The rules are designed so the only way we can 
get a match beginning with the designated tile: 

is to have an actual accepting computation of M on 
w.  Hand-wave, in the book, LTTR.

• Combining the two directions, we get:
M accepts w iff <TM,w, tM,w> ∈ MPCP, that is,
<M, w> ∈ AccTM iff <TM,w, tM,w> ∈ MPCP.

#
# q0 w1 w2 … wn #



MPCP is undecidable
• <M, w> ∈ AccTM iff <TM,w, tM,w> ∈ MPCP.

• Theorem: MPCP is undecidable.
• Proof:

– By contradiction.
– Assume MPCP is decidable, and decide AccTM, using S:
– S:  On input <M, w>:

• Step 1:  Construct <TM,w, tM,w>, instance of MPCP, as described.
• Step 2:  Use MPCP to decide if TM,w has a match beginning with 

tM,w.  If so, accept; if not, reject.

– Thus, if MPCP is decidable, then also AccTM is 
decidable, contradiction.



Undecidability of (Unmodified) PCP



Undecidability of PCP
• We showed that MPCP, in which the input is a set of tiles + 

designated input tile, is undecidable, by reducing AccTM to 
MPCP.

• Now we want:
• Theorem: PCP is undecidable.
• Why doesn’t our construction reduce AccTM to PCP?
• TM,v has trivial matches, e.g., just 

• Proof of the theorem:
– To show that PCP is undecidable, reduce MPCP to PCP, that is, 

show that if PCP is decidable, then so is MPCP.

a
a



Undecidability of PCP
• Theorem: PCP is undecidable.
• Proof:

– Reduce MPCP to PCP. 
– To decide MPCP using PCP, suppose we are given:

• T:

• t:  

– We want to know if there is a match beginning with t.
– Construct an instance T′ of ordinary PCP that has a 

match (starting with any tile) iff T has a match starting 
with t.

u1
v1

u1
v1

u2
v2

uk
vk



Undecidability of PCP
• Given T:                                                 t:
• Construct an instance T′ of PCP that has a match 

iff T has a match starting with t.
• Construction (technical):

– Add 2 new alphabet symbols,  ♥ and ♦
– If u = u1 u2…un then define:

• ♥ u = ♥ u1 ♥ u2 … ♥ un

• u ♥ = u1 ♥ u2 … ♥ un ♥
• ♥ u ♥ = ♥ u1 ♥ u2 … ♥ un ♥

– Instance T′ of PCP:

u1
v1

u1
v1

u2
v2

uk
vk

♥ u1
♥ v1 ♥

♥ u1
v1 ♥

♥ ♦
♦

♥ u2
v2 ♥

♥ uk
vk ♥



Undecidability of PCP
• Claim:  T has a match starting with t iff T′ has any 

match.
⇒ Suppose T has a match starting with t:

Mimic this match with T′ tiles, starting with             
and ending with 

Yields the same matching strings, with ♥s 
interspersed, and with ♦ at the end.

⇐ If T′ has any match, it must begin with                   
because that’s the only tile in which top and    
bottom start with the same symbol.
Other tiles are like T tiles but with extra ♥s.
Stripping out ♥s yields match for T beginning with t.

u1
v1

♥ u1
♥ v1 ♥♥ ♦

♦

♥ u1
♥ v1 ♥



Undecidability of PCP
• So, to decide MPCP using a decider for 

PCP:
• Given instance <T, t> for MPCP,

– Step 1:  Construct instance T′ for PCP, as 
above.

– Step 2:  Ask decider for PCP whether T′ has 
any match.  

• If so, answer yes for <T, t>.
• If not, answer no.

• Since we already know MPCP is 
undecidable, so is PCP.



Next time…

• Mapping reducibility
• Rice’s Theorem
• Reading:

– Sipser Section 5.3, Problems 5.28-5.30.
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