6.045: Automata, Computability, and Complexity Or, Great Ideas in Theoretical Computer Science Spring, 2010

> Class 8 Nancy Lynch

Today

- More undecidable problems:
 - About Turing machines: Emptiness, etc.
 - About other things: Post Correspondence Problem.
- Topics:
 - Undecidable problems about Turing machines.
 - The Post Correspondence Problem: Definition
 - Computation histories
 - First proof attempt
 - Second attempt: Undecidability of modified PCP (MPCP)
 - Finish undecidability of PCP
- Reading: Sipser Sections 4.2, 5.1.

Undecidable Problems about Turing Machines

Undecidable Problems about Turing Machines

- We already showed that Acc_{TM} and $Halt_{TM}$ are not Turing-decidable (and their complements are not even Turing-recognizable).
- Now consider some other problems:
 - $Acc01_{TM} = \{ \langle M \rangle | M \text{ is a TM that accepts the string 01} \}$
 - $Empty_{TM} = \{ \langle M \rangle | M \text{ is a TM that accepts no strings} \}$
 - $\text{Reg}_{TM} = \{ <M > | M \text{ is a TM and } L(M) \text{ is regular} \}$
 - EQ_{TM}, equivalence for TMs, = { < M_1 , M_2 > | M_1 and M_2 are TMs and L(M_1) = L(M_2) }

- $Acc01_{TM} = \{ \langle M \rangle | M \text{ accepts the string } 01 \}$
- Theorem 1: $Acc01_{TM}$ is not Turing-decidable.
- This might seem surprising---it seems simpler than the general acceptance problem, since it involves just one particular string.
- Proof attempt:
 - Try a reduction---show if you could decide $Acc01_{TM}$ then you could decide general acceptance problem Acc_{TM} .
 - Let R be a TM that decides Acc01_{TM}.; design S to decide Acc_{TM}.
 - S: On input <M,w>:
 - Run R on <M>.
 - If R accepts... ??? Gives useful information only if w = 01.
 - Doesn't work.

- Theorem 1: $Acc01_{TM}$ is not Turing-decidable.
- Proof attempt:
 - Let R be a TM that decides $Acc01_{TM}$.
 - S: On input <M,w>:
 - Run R on <M>.
 - If R accepts...???
 - Doesn't work.
- How can we use information about what a machine does on 01 to help decide what a given machine M will do on an arbitrary w?
- Idea: Consider a different machine---modify M.

- Theorem 1: $Acc01_{TM}$ is not Turing-decidable.
- Proof:
 - Let R be a TM that decides $Acc01_{TM}$.; design S to decide Acc_{TM} .
 - S: On input <M,w>:
 - Instead of running M on w, S constructs a new machine $M'_{M,w}$ that depends on M and w.
 - $M'_{M,w}$: On any input x, ignores x and runs M on w.
 - Thus, the new machine is the same as M, but hard-wires in the given input w.
 - More precisely:

- Theorem 1: $Acc01_{TM}$ is not Turing-decidable.
- Proof:
 - R decides $Acc01_{TM}$; design S to decide Acc_{TM} .
 - S: On input <M,w>:
 - Step 1: Construct a new machine $<M'_{M,w}>$, where
 - $M'_{M,w}$: On input x:
 - Run M on w and accept/reject if M does.
 - Step 2: Run R on <M'_{M,w} >, and accept/reject if R does.
 - Note that S can construct <M'_{M,w} > algorithmically, from inputs M and w.

- Theorem 1: $Acc01_{TM}$ is not Turing-decidable.
- Proof:
 - R decides $Acc01_{TM}$; design S to decide Acc_{TM} .
 - S: On input <M,w>:
 - Step 1: Construct a new machine $<M'_{M,w}>$, where
 - $M'_{M,w}$: On input x:
 - Run M on w and accept/reject if M does.
 - Step 2: Run R on $<M'_{M,w}>$, and accept/reject if R does.
 - Running R on $<M'_{M,w}>$ tells us whether or not $M'_{M,w}$ accepts 01.
 - Claim: $M'_{M,w}$ accepts 01 if and only if M accepts w.
 - M'_{M,w} always behaves the same, ignoring its own input and simulating M on w.
 - If M'_{M,w} accepts 01 (or anything else), then M accepts w.
 - If M accepts w, then $M'_{M,w}$ accepts 01 (and everything else).
 - So S gives the right answer for whether M accepts w.

- Theorem 1: $Acc01_{TM}$ is not Turing-decidable.
- Theorem: $Acc01_{TM}$ is Turing-recognizable.
- Corollary: $(Acc01_{TM})^{c}$ is not Turing-recognizable.

Empty_{TM}

- $Empty_{TM} = \{ \langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \}$
- Theorem 2: Empty_{TM} is not Turing-decidable.
- Proof:
 - Reduce Acc_{TM} to $Empty_{TM}$.
 - Modify the given machine M: Given <M,w>, construct a new machine M' so that asking whether $L(M') = \emptyset$ gives the right answer to whether M accepts w:
 - Specifically, M accepts w if and only if $L(M') \neq \emptyset$.
 - Use the same machine M' as for $Acc01_{TM}$.
 - S: On input <M,w>:
 - Step 1: Construct < $M'_{M,w}$ > as before, which acts on every input just like M on w.
 - Step 2: Ask whether $L(M'_{M,w}) = \emptyset$ and output the opposite answer.

Empty_{TM}

- Theorem 2: $Empty_{TM}$ is not Turing-decidable.
- Proof:
 - Reduce Acc_{TM} to $Empty_{TM}$.
 - S: On input <M,w>:
 - Step 1: Construct < $M'_{M,w}$ > as before, which acts on every input just like M on w.
 - Step 2: Ask whether $L(M'_{M,w}) = \emptyset$ and output the opposite answer.
 - Now M accepts w

if and only if $M'_{M,w}$ accepts everything if and only if $M'_{M,w}$ accepts something if and only if $L(M'_{M,w}) \neq \emptyset$.

- So S decides Acc_{TM} , contradiction.
- So Empty_{TM} is not Turing-decidable.

Empty_{TM}

- Theorem 2: $Empty_{TM}$ is not Turing-decidable.
- Theorem: $(Empty_{TM})^c$ is Turing-recognizable.
- Proof: On input <M>, run M on all inputs, dovetailed, accept if any accept.
- Corollary: Empty_{TM} is not Turing-recognizable

Reg_{TM}

- $\text{Reg}_{TM} = \{ \langle M \rangle | M \text{ is a TM and } L(M) \text{ is regular} \}$
- That is, given a TM, we want to know whether its language is also recognized by some DFA.
- For some, the answer is yes: TM that recognizes 0*1*
- For some, no: TM that recognizes $\{0^n1^n \mid n \ge 0\}$
- We can prove that there is no algorithm to decide whether the answer is yes or no.
- Theorem 3: Reg_{TM} is not Turing-decidable.
- Proof:
 - Reduce Acc_{TM} to Reg_{TM} .
 - Assume TM R that decides Reg_{TM} , design S to decide Acc_{TM} .
 - S: On input <M,w>:
 - Step 1: Construct a new machine < M'_{M,w} > that accepts a regular language if and only if M accepts w.
 - Tricky...

Reg_{TM}

- $\operatorname{Reg}_{TM} = \{ \langle M \rangle \mid L(M) \text{ is regular } \}$
- Theorem 3: Reg_{TM} is not Turing-decidable.
- Proof:
 - Assume R decides Reg_{TM} , design S to decide Acc_{TM} .
 - S: On input <M,w>:
 - Step 1: Construct a new machine < M'_{M,w} > that accepts a regular language if and only if M accepts w.
 - $M'_{M,w}$: On input x:
 - If x is of the form 0ⁿ1ⁿ, then accept.
 - If x is not of this form, then run M on w and accept if M accepts.
 - Step 2: Run R on input $< M'_{M,w} >$, and accept/reject if R does.

Reg_{TM}

- Theorem 3: Reg_{TM} is not Turing-decidable.
- Proof:
 - S: On input <M,w>:
 - Step 1: Construct a new machine < M'_{M,w} > that accepts a regular language if and only if M accepts w.
 - $M'_{M,w}$: On input x:
 - If x is of the form 0ⁿ1ⁿ, then accept.
 - If x is not of this form, then run M on w and accept if M accepts.
 - Step 2: Run R on input < $M'_{M,w}$ >, and accept/reject if R does.
 - If M accepts w, then $M'_{M,w}$ accepts everything, hence recognizes the regular language $\{0,1\}^*$.
 - If M does not accept w, then M'_{M,w} accepts exactly the strings of the form 0ⁿ1ⁿ, which constitute a non-regular language.
 - Thus, M accepts w iff $M'_{M,w}$ recognizes a regular language.

And more questions

- Many more questions about what TMs compute can be proved undecidable using the same method.
- One more example: EQ_{TM} = {<M₁, M₂> | M₁ and M₂ are basic TMs that recognize the same language }
- Theorem 4: EQ_{TM} is not Turing-decidable.
- Proof:
 - Reduce $Empty_{TM}$ to EQ_{TM} .
 - Assume R is a TM that decides EQ_{TM} ; design S to decide $Empty_{TM}$.
 - Define any particular TM M_{\varnothing} with L(M) = \varnothing (M accepts nothing).
 - S: On input <M>:
 - Run R on input <M, M_{\odot} >; accept/reject if R does.
 - R tells whether <M, M_{\varnothing} > $\in EQ_{TM}$, that is, whether L(M) = L(M_{\varnothing}) = Ø.

An Undecidable Problem not involving Turing Machines

Post Correspondence Problem

- A simple string-matching problem.
- Given a finite set of "tile types", e.g.:

$$\left\{ \left(\begin{array}{c} a \\ a b \end{array} \right) \left(\begin{array}{c} c a \\ a b \end{array} \right) \left(\begin{array}{c} b \\ c \end{array} \right) \left(\begin{array}{c} b d \\ d \end{array} \right) \right\}$$

 Is there a nonempty finite sequence of tiles (allowing repetitions, and not necessarily using all the tile types) for which the concatenation of top strings = concatenation of bottom strings?

• Example:
$$\begin{pmatrix} a \\ a b \end{pmatrix} \begin{pmatrix} b d \\ d \end{pmatrix}$$
 Or $\begin{pmatrix} a \\ a b \end{pmatrix} \begin{pmatrix} c \\ a \end{pmatrix} \begin{pmatrix} b d \\ d \end{pmatrix}$

- No limit on length, but must be finite.
- Call such a sequence a match, or correspondence.
- Post Correspondence Problem (PCP) =
 { < T > | T is a finite set of tile types that has a match }

Post Correspondence Problem

- Given a finite set of tile types, is there a nonempty finite sequence of tiles for which the concatenation of top strings = concatenation of bottom strings?
- Call sequence a match, or correspondence.
- Post Correspondence Problem (PCP) =
 { < T > | T is a finite set of tile types that has a match }.
- Theorem: PCP is undecidable.
- Proof:
 - Reduce Acc_{TM} to PCP.
 - Previous reductions involved reducing one question about TMs (usually Acc_{TM}) to another question about TMs.
 - Now we reduce TM acceptance to a question about matching strings.
 - Do this by encoding TM computations using strings...

Computation Histories

Computation Histories

- Computation History (CH): A formal, stylized way of representing the computation of a TM on a particular input.
- Configuration:
 - Instantaneous snapshot of the TM's computation.
 - Includes current state, current tape contents, current head position.
 - Write in standard form: $w_1 q w_2$, where w_1 and w_2 are strings of tape symbols and q is a state.
 - Meaning:
 - $w_1 w_2$ is the string on the non-blank portion of the tape, perhaps part of the blank portion (rest assumed blank).
 - w_1 is the portion of the string strictly to the left of the head.
 - w_2 is the portion directly under the head and to the right.
 - q is the current state.

Configurations

• Configuration:

- $w_1 q w_2$, where w_1 and w_2 are strings of tape symbols and q is a state.
- Meaning:
 - $w_1 w_2$ is the string on the non-blank portion of the tape, perhaps part of the blank portion (rest assumed blank).
 - w_1 is the portion of the string strictly to the left of the head.
 - w_2 is the portion directly under the head and to the right.
 - q is the current state.
- Example: 0011q01 represents TM configuration:

Computation Histories

- TM begins in a starting configuration, of the form q₀ w, where w is the input string, and moves through a series of configurations, following the transition function.
- Computation History of TM M on input w:
 - A (finite or infinite) sequence of configs $C_1, C_2, C_3, ..., C_k,...$, where
 - C_1, C_2, \ldots are configurations of M.
 - C_1 is the starting configuration with input w.
 - Each C_{i+1} follows from C_i using M's transition function.
- Accepting CH: Finite CH ending in accepting configuration.
- Rejecting CH: Finite CH ending in rejecting configuration.
- Represent CH as a string # C₁ # C₂ # ... # C_k #, where # is a special separator symbol.
- Claim: M accepts w iff there is an accepting CH of M on w.

Undecidability of PCP: First Attempt

- Theorem: PCP is undecidable.
- Proof attempt:
 - Reduce Acc_{TM} to PCP, that is, show that, if we can decide PCP, then we can decide Acc_{TM} .
 - Given <M,w>, construct a finite set $T_{M,w}$ of tile types such that $T_{M,w}$ has a match iff M accepts w.
 - That is, $T_{M,w}$ has a match iff there is an accepting CH of M on w.
 - Write the accepting CH twice:

- Given <M,w>, construct a finite set $T_{M,w}$ of tile types s.t. $T_{M,w}$ has a match iff there is an accepting CH of M on w.
- Write the accepting CH twice, and split along boundaries of successive configurations:

- What tiles do we need?

$$-\operatorname{Try} \mathbf{T}_{\mathsf{M},\mathsf{w}} = \left\{ \begin{pmatrix} \# \\ \# C_1 \end{pmatrix} \begin{pmatrix} C_k \# \\ \# \end{pmatrix} \begin{pmatrix} C_i \# \\ \# C_j \end{pmatrix} \right\}$$
where

- C_1 = starting configuration for M on w,
- C_k = accepting configuration (can assume unique, because we can assume accepting machine cleans up its tape).
- C_i follows from C_i by rules of M (one step).

$$-\mathsf{T}_{\mathsf{M},\mathsf{W}} = \left\{ \begin{pmatrix} \# \\ \# C_1 \end{pmatrix} \begin{pmatrix} C_k \# \\ \# \end{pmatrix} \begin{pmatrix} C_i \# \\ \# C_j \end{pmatrix} \right\}$$

- C_1 = starting configuration for M on w,
- C_k = accepting configuration.
- C_j follows from C_i by rules of M (one step).
- M accepts w iff $T_{M,w}$ has a match.
- But there is a problem:
 - $T_{M,w}$ has infinitely many tile types $T_{M,w}$, because M has infinitely many configurations.
 - Configuration has tape contents, state, head position---infinitely many possibilities.
 - Of course, in any particular accepting computation, only finitely many configurations appear.
 - But we don't know what these are ahead of time.
 - So we can't pick a single finite set of tiles.

- M accepts w iff $T_{M,w}$ has a match.
- But:
 - $T_{M,w}$ has infinitely many tile types $T_{M,w}$, because M has infinitely many configurations.
 - In any particular accepting computation, only finitely many configurations appear.
 - But we can't pick a single finite set of tiles for all computations.
- New insight:
 - Represent infinitely many configurations with finitely many tiles.
 - Going from one configuration to the next involves changing only a few "local" things:
 - State
 - Contents of one tape cell
 - Position of head, by at most 1
 - So let tiles represent small pieces of configs, not entire configs.

Undecidability of Modified PCP

Undecidability of Modified PCP

- Modified PCP (MPCP): Like PCP, but we're given not just a finite set of tiles, but also a designated tile that must start the match.
- MPCP = { <T, t > | T is a finite set of tiles, t is a tile in T, and there is a match for T starting with t }.
- Theorem: MPCP is undecidable.
- Later, we remove the requirement to start with t:
- Theorem: PCP is undecidable.
- Proof:
 - By reducing MPCP to PCP.
 - If PCP were decidable, MPCP would be also, contradiction.

- Reduce Acc_{TM} to MPCP.
- Given <M,w>, construct (T_{M,w}, t_{M,w}), an instance of MPCP.
- 7 kinds of tiles:
- Type 1 tile: $\begin{pmatrix} \# \\ \# q_0 w_1 w_2 \dots w_n \# \end{pmatrix}$
 - $w = w_1 w_2 \dots w_n$
 - $-q_0 w_1 w_2 \dots w_n$ is the starting configuration for input w.
 - Bottom string is long, but there's only one tile like this.
 - Tile depends on w, which is OK.
 - Make this the initial tile $t_{M,w}$.

- Now consider how M goes from one configuration to the next.
- E.g., by moving right: $\delta(q,a) = (q',b,R)$.
- Config changes using this transition look like (e.g.):

 $- w_1 w_2 q a w_3 \rightarrow w_1 w_2 b q' w_3.$

- Only change is to replace q a by b q'.
- Type 2 tiles:
 - For each transition of the form $\delta(q,a) = (q',b,R)$:

$$\left(\begin{array}{c} q a \\ b q' \end{array}\right)$$

- E.g., moving left: $\delta(q,a) = (q',b,L)$.
- Type 3 tile:
 - For each transition of the form $\delta(q,a) = (q',b,L)$, and every symbol c in the tape alphabet Γ :

- Include arbitrary c because it could be anything.
- Notice, only finitely many tiles (so far).

- Now, to match unchanged portions of 2 consecutive configurations:
- Type 4 tile:
 - For every symbol a in the tape alphabet Γ :

• Still only finitely many tiles.

- What can we do with the tiles we have so far?
- Example: Partial match
 - Suppose the starting configuration is $q_0 1 1 0$ and the first move is $(q_0, 1) \rightarrow (q_4, 0, R)$.
 - Then the next configuration is $0 q_4 1 0$.
 - We can start the match with tile 1: $\begin{pmatrix} # \\ # q_0 & 110 & # \end{pmatrix}$

- Continue with type 2 tile: $\begin{pmatrix} q_0 & 1 \\ 0 & q_4 \end{pmatrix}$
- Use type 4 tiles for the 2 unchanged symbols: $\begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix}$
- Yields: $\# [q_0 \ 1 \ 1 \ 0 \] \#$ $\# q_0 1 1 0 \# 0 q_4 1 0 \#$

- Now we put in the separators.
- Type 5 tiles:

Allows us to add extra spaces at right end as needed---lets the configuration size grow.

• Example: Extend previous match:

- How does this end?
- Type 6 tiles:
 - For every a in Γ :
 - A trick…

$$\left(\begin{array}{c} a \ q_{acc} \\ q_{acc} \end{array}\right) \left(\begin{array}{c} q_{acc} \ a \\ q_{acc} \end{array}\right)$$

- Adds "pseudo-steps" to the end of the computation, where the state "eats" adjacent symbols in the top row.
- Yields one symbol less in each successive bottom configuration.
- Do this until the remaining bottom "configuration" is q_{acc} #:

- To finish off:
- Type 7 tile:

$$\left(\begin{array}{c} q_{acc} \# \# \\ \# \end{array}\right)$$

- That completes the definition of $T_{M,w}$ and $t_{M,w}$.
- Note that $T_{M,w}$, for a given M and w, is a finite set of tiles.

- That completes the definition of $T_{M,w}$ and $t_{M,w}$.
- Note that $T_{M,w}$, for a given M and w, is a finite set of tiles.
- Why does this work?
- Must show:
 - If M accepts w, then $T_{M,w}$ has a match beginning with $t_{M,w}$, that is, $\langle T_{M,w}, t_{M,w} \rangle \in MPCP$.
 - If $< T_{M,w}, t_{M,w} > \in MPCP$, then M accepts w.
- If M accepts w, then there is an accepting computation history, which can be described by a match using the given tiles, starting from the distinguished initial tile:

• If M accepts w, then there is an accepting computation history, which can be described by a match using the given tiles, starting from the distinguished initial tile:

• So $T_{M,w}$ has a match beginning with $t_{M,w}$, that is, $< T_{M,w}$, $t_{M,w} > \in MPCP$.

- If $<T_{M,w}$, $t_{M,w} > \in$ MPCP, that is, if $T_{M,w}$ has a match beginning with the designated tile $t_{M,w}$, then M accepts w.
- The rules are designed so the only way we can get a match beginning with the designated tile:

$$q_0 w_1 w_2 \dots w_n #$$

is to have an actual accepting computation of M on w. Hand-wave, in the book, LTTR.

• Combining the two directions, we get: M accepts w iff $\langle T_{M,w,} t_{M,w} \rangle \in MPCP$, that is, $\langle M, w \rangle \in Acc_{TM}$ iff $\langle T_{M,w,} t_{M,w} \rangle \in MPCP$.

- <M, w> \in Acc_{TM} iff <T_{M,w}, $t_{M,w}$ > \in MPCP.
- Theorem: MPCP is undecidable.
- Proof:
 - By contradiction.
 - Assume MPCP is decidable, and decide Acc_{TM} , using S:
 - S: On input <M, w>:
 - Step 1: Construct $< T_{M,w}$, $t_{M,w}$, instance of MPCP, as described.
 - Step 2: Use MPCP to decide if $T_{M,w}$ has a match beginning with $t_{M,w}$. If so, accept; if not, reject.
 - Thus, if MPCP is decidable, then also Acc_{TM} is decidable, contradiction.

Undecidability of (Unmodified) PCP

- We showed that MPCP, in which the input is a set of tiles + designated input tile, is undecidable, by reducing Acc_{TM} to MPCP.
- Now we want:
- Theorem: PCP is undecidable.
- Why doesn't our construction reduce Acc_{TM} to PCP?
- T_{M,v} has trivial matches, e.g., just
- Proof of the theorem:
 - To show that PCP is undecidable, reduce MPCP to PCP, that is, show that if PCP is decidable, then so is MPCP.

- Theorem: PCP is undecidable.
- Proof:
 - Reduce MPCP to PCP.
 - To decide MPCP using PCP, suppose we are given:

• T:
$$\left\{ \begin{pmatrix} u_1 \\ v_1 \end{pmatrix} \begin{pmatrix} u_2 \\ v_2 \end{pmatrix} \dots \begin{pmatrix} u_k \\ v_k \end{pmatrix} \right\}$$

• t:
$$\begin{pmatrix} u_1 \\ v_1 \end{pmatrix}$$

- We want to know if there is a match beginning with t.
- Construct an instance T' of ordinary PCP that has a match (starting with any tile) iff T has a match starting with t.

- Given T: $\left\{ \begin{pmatrix} u_1 \\ v_1 \end{pmatrix} \begin{pmatrix} u_2 \\ v_2 \end{pmatrix} \dots \begin{pmatrix} u_k \\ v_k \end{pmatrix} \right\} = t \left\{ \begin{pmatrix} u_1 \\ v_1 \end{pmatrix} \right\}$
- Construct an instance T' of PCP that has a match iff T has a match starting with t.
- Construction (technical):
 - Add 2 new alphabet symbols, v and
 - If $u = u_1 u_2 \dots u_n$ then define:
 - • $\mathbf{u} = \mathbf{v} \ \mathbf{u}_1 \mathbf{v} \ \mathbf{u}_2 \ \dots \mathbf{v} \ \mathbf{u}_n$
 - $\mathbf{u} \mathbf{v} = \mathbf{u}_1 \mathbf{v} \mathbf{u}_2 \dots \mathbf{v}_n \mathbf{v}_n$
 - • $\mathbf{u} \bullet = \mathbf{v} \cdot \mathbf{u}_1 \bullet \mathbf{u}_2 \dots \bullet \mathbf{u}_n \bullet$
 - Instance T' of PCP:

$$\left\{ \left(\begin{array}{c} \bullet & \mathsf{u}_1 \\ \bullet & \mathsf{v}_1 \bullet \end{array}\right) \left(\begin{array}{c} \bullet & \mathsf{u}_1 \\ \mathsf{v}_1 \bullet \end{array}\right) \left(\begin{array}{c} \bullet & \mathsf{u}_2 \\ \mathsf{v}_2 \bullet \end{array}\right) \cdots \left(\begin{array}{c} \bullet & \mathsf{u}_k \\ \mathsf{v}_k \bullet \end{array}\right) \left(\begin{array}{c} \bullet & \bullet \\ \bullet \end{array}\right) \right\}$$

- Claim: T has a match starting with t iff T' has any match.
 - $\begin{pmatrix} \mathbf{u}_1 \\ \mathbf{v}_1 \end{pmatrix}$ \Rightarrow Suppose T has a match starting with t: Mimic this match with T' tiles, starting with $\begin{pmatrix} \mathbf{v} & \mathbf{u}_1 \\ \mathbf{v} & \mathbf{v}_1 \mathbf{v} \end{pmatrix}$ and ending with

Yields the same matching strings, with vs

interspersed, and with \blacklozenge at the end. If T' has any match, it must begin with $\begin{pmatrix} \Psi & u_1 \\ \Psi & v_1 \Psi \end{pmatrix}$ \leftarrow because that's the only tile in which top and bottom start with the same symbol. Other tiles are like T tiles but with extra \forall s. Stripping out vs yields match for T beginning with t.

- So, to decide MPCP using a decider for PCP:
- Given instance <T, t> for MPCP,
 - Step 1: Construct instance T' for PCP, as above.
 - Step 2: Ask decider for PCP whether T' has any match.
 - If so, answer yes for <T, t>.
 - If not, answer no.
- Since we already know MPCP is undecidable, so is PCP.

Next time...

- Mapping reducibility
- Rice's Theorem
- Reading:

– Sipser Section 5.3, Problems 5.28-5.30.

6.045J / 18.400J Automata, Computability, and Complexity Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.