PROFESSOR: So let's look at two examples of using the well-ordering principle. One of them is pretty obvious, and the other one is not hard but a little bit more interesting. So what we're going to prove is that every integer greater than one is a product of primes. So remember a prime is an integer greater than 1 that is only divisible by itself and the number 1 . It can't be expressed as the product of other numbers greater than 1 .

So the way we're going to prove this is by contradiction, and we're going to begin by assuming suppose that there were some numbers that were non-products of primes. OK. That is to say, the set of non-products is non-empty. So applying the least-- the well-ordering principle to this non-empty set of non-products, there's got to be a least one, so m is a number greater than 1 that is not a product of primes. Now, by convention, if m itself was a prime, it's considered to be a product of one prime, so we know that m is not a prime.

Now look. M is not a prime, or if it was a prime, it would be a product of just itself, so that means that it must be a product of two numbers, call them j and k , where j and k are greater than 1 and less than m. That's what it means to be a non-prime-- it's a product of j and k . Well, j and k are less than m, so that means that they must be prime products, because they're less than m and greater than 1 , and m is the smallest such number that's not a product of primes. So we can assume that j is equal to some product of prime say, p 1 through p 94 , and k is some other product of primes, q1 through q13, so you can see where this is going. Now what we have is that m , which is jk , is simply the product of those p's followed by the product of those q's and is, in fact, a prime product which is a contradiction.

So what did we assume that led to the contradiction? We assumed that there were some counter-examples, and there must not be any, and no counter-examples means that, in fact, every single integer greater than 1 is indeed a product of primes as [AUDIO OUT].

Let's start looking at a slightly more interesting example using the well-ordered principle to reasoning about postage. So suppose that we have a bunch of $\$ 0.05$ stamps and $\$ 0.03$ stamps, and what I want to analyze is what amounts of postage can you make out of $\$ 0.05$ stamps and $\$ 0.03$ stamps? So I'm going to introduce a technical definition for convenience. Let's say that a number n is postal. If I can make n plus $\$ 0.08$ postage from $\$ 0.03$ and $\$ 0.05$ stamps.

So this is what I'm going to prove. I claim that every number is postal. In other words, I can make every amount of postage from $\$ 0.08$ up. I'm going to prove this by applying the wellordering principle, and as usual with well-ordering principles we'll begin by supposing that there was a number that wasn't postal. That would be a counter-example, so if there's any number that's not postal, then there's at least one m by the well-ordering principal, because the set of counter-examples is non-empty if some number is not postal, so there's at least one. So what we know, in other words, is that this least m that's not postal has the property. It's not postal, and any number less than it is postal.

See what we can figure out about m . First of all, m is not $0--0$ is postal, because 0 plus $\$ 0.08$ can be made with a $\$ 0.03$ stamp and a $\$ 0.05$ stamp. M is not 0 , because m is supposed to be not postal. As a matter of fact, by the same reasoning, m is not 1 because you can make 1 plus $\$ 0.08$ with three $\$ 0.03$, and m is not 2 , because you can make 2 plus $\$ 0.08$-- $\$ 0.10--$ using two $\$ 0.05$. So we've just figured out that this least counter-example has to be greater than or equal to 3 , because 0,1 , and 2 are not counter-examples.

So we've got that m is greater than or equal to 3 , the least non-postal number, so if I look at m minus 3 , that means it's a number that's greater than or equal to 0 , and it's less than m, so it's postal, because m is the least non-postal one. So, in other words, I can make-- out of \$0.03 and $\$ 0.05$ stamps, I can make m minus 3 plus $\$ 0.08$ but, look, if I can make m minus 3 plus $\$ 0.08$, then obviously m is postal also, because I just add $\$ 0.03$ to that and minus 3 number, and I wind up with m plus $\$ 0.08$, which says that m is postal and is a contradiction.

So assuming that there was a least non-postal number, I reach a contradiction and therefore there is no non-postal number. Every number is postal-- 0 plus 8 is postal, 1 plus 8 is postal, 2 plus 8 is postal. Every number greater than or equal to $\$ 0.08$ can be made out of $\$ 0.03$ and $\$ 0.05$ stamps.

