

Surprise
 Problem 1

Not Math：Cogito ergo sum

René Descartes＇ meditations
on First Philosophy in which the Existence of God and the Distinction Between Mind and Body are Demonstrated．

Evidence vs．Proof

Let $p(n)::=n^{2}+n+41$ ．

Claim：

$\underbrace{\forall n} \underbrace{\in \mathbb{N}} p(n)$ is a prime number
For all n that are natural numbers

$$
0,1,2, \ldots
$$

品品品品
 is••ำ

Evidence：

Only Prime Numbers？

$$
\begin{array}{ccl}
p(0)=41 & \text { prime } & \\
p(1)=43 & \text { prime } & \\
p(2)=47 & \text { prime } & \\
p(3)=53 & \text { prime } & \\
\vdots & & \\
p(20)=461 & \text { prime } & \text { looking good! } \\
\vdots & & \\
p(39)=1601 & \text { prime } & \text { enough already! }
\end{array}
$$

Only Prime Numbers？

$$
\forall n \in \mathbb{N} \quad p(n):: \doteq n^{2}+n+41
$$

is a prime number

This is not a coincidence．
The hypothesis must be true．But no！

$$
p(40)=1681 \text { is not prime. }
$$

Only Prime Numbers？

Quickie：
Prove that 1681 is not prime．

$$
\begin{aligned}
\text { Proof: } & 1681=\mathrm{p}(40) \\
& =40^{2}+40+41 \\
= & 40^{2}+2 \cdot 40+1 \\
& =(40+1)^{2}
\end{aligned}
$$

Evidence vs．Proof

EULER＇S CONJECTURE（1769）

$$
a^{4}+b^{4}+c^{4}=d^{4}
$$

has no solution for a, b, c, d positive integers

$$
\forall a \in \mathbb{Z}^{+} \forall b \in \mathbb{Z}^{+} \forall c \in \mathbb{Z}^{+} \forall d \in \mathbb{Z}^{+}
$$

$$
a^{4}+b^{4}+c^{4} \neq d^{4}
$$

$$
\left.\begin{array}{l}
\text { Counterexample: } 218 \text { years later by Noam } \\
\text { Elkies at Liberal Arts school up Mass Ave: } \\
95800^{4}+217519^{4}+414560^{4}=422481^{4} \\
\text { Proof } \quad\left(=\left(+\begin{array}{ll}
\text { (expt 95800 4) } \\
\text { (expt 217519 4) } \\
\text { (expt 414560 computer: }
\end{array}\right.\right. \\
\text { (value: \#t } \\
\text { (expt 42481 4)) }
\end{array}\right)
$$

\section*{| 6 | 2 | 13 | 7 |
| :---: | :---: | :---: | :---: |
| 12 | | 10 | 5 |
| 3 | 1 | 4 | | | 3 | 1 | 4 | 14 |
| :--- | :--- | :--- | :--- |
| 15 | 8 | 11 | 2 |}

Operators

$$
\begin{aligned}
& \wedge::=\mathrm{AND} \\
& \vee::=\mathrm{OR} \\
& \neg::=\mathrm{NOT} \\
& \rightarrow::=\text { IMPLIES } \\
& \leftrightarrow::=\text { IFF (if and only if) }
\end{aligned}
$$

English to Math

Greeks carry Swords or Javelins

$$
(G \rightarrow \underbrace{S}_{\text {disjunction }}) \vee(G \rightarrow J)
$$

True even if a Greek carries both

Propositional (Boolean) Logic

Proposition is either True or False
Examples: $2+2=4 \quad$ True
$1 \times 1=4 \quad$ False
Non-examples: Wake up!
Where am I?

(190) 110 궁․ 12
 English to Math
 "If Greeks are Human, and Humans are Mortal, then Greeks are Mortal."
 $$
((G \rightarrow H) \wedge(H \rightarrow M)) \rightarrow(G \rightarrow M)
$$

Math vs. English

Parent: If you don't clean your room, you can't watch a DVD."
that is
D

Math vs. English

Mathematician:

"If a function is not continuous, then it is not differentiable." D
$\neg C \longrightarrow \neg D$

狍:
 wo. :

Math vs. English

Mathematician:

"If a function is not continuous, then it is not differentiable." But $C \longrightarrow D$
is not implied

Deductions

From: $\quad P$ implies Q, Q implies R
Conclude: P implies R
Antecedents

$$
\frac{(P \rightarrow Q),(Q \rightarrow R)}{\underbrace{P \rightarrow R}_{\text {Conclusion }}}
$$

Sound Rules

Definition: A rule is sound if the conclusion is true whenever all antecedents are true.

An Unsound Deduction

$$
\frac{\bar{P} \rightarrow \bar{Q}}{P \rightarrow Q}
$$

