Massachusetts Institute of Technology
6.042J/18.062J, Fall '05: Mathematics for Computer Science

In-Class Problems Week 1, Wed.

Problem 1. Identify exactly where the bugs are in each of the following bogus proofs. ${ }^{1}$
(a) $1 / 8>1 / 4$.

Bogus proof.

$$
\begin{aligned}
3 & >2 \\
3 \log _{10}(1 / 2) & >2 \log _{10}(1 / 2) \\
\log _{10}(1 / 2)^{3} & >\log _{10}(1 / 2)^{2} \\
(1 / 2)^{3} & >(1 / 2)^{2},
\end{aligned}
$$

and the claim now follows by the rules for multiplying fractions.
(b) $1 \varnothing=\$ 0.01=(\$ 0.1)^{2}=(10 \notin)^{2}=100 \notin=\$ 1$.

[^0]
Problem 2.

Proposition (Arithmetic-Geometric Mean Inequality). For all nonnegative real numbers a and b

$$
\frac{a+b}{2} \geq \sqrt{a b} .
$$

What is wrong with the following proof of this proposition?
Bogus proof.

$$
\begin{aligned}
\frac{a+b}{2} & \stackrel{?}{\geq} \sqrt{a b} \\
a+b & \stackrel{?}{\geq} 2 \sqrt{a b} \\
a^{2}+2 a b+b^{2} & \stackrel{?}{\geq} 4 a b \\
a^{2}-2 a b+b^{2} & \stackrel{?}{\geq} 0 \\
(a-b)^{2} & \geq 0
\end{aligned}
$$

The last statement is true because $a-b$ is a real number, and the square of a real number is never negative. This proves the claim.

[^0]: Copyright © 2005, Prof. Albert R. Meyer.
 ${ }^{1}$ From Stueben, Michael and Diane Sandford. Twenty Years Before the Blackboard, Math. Assoc America, ©1998.

