
X86-64 Architecture Guide

For the code-generation project, we shall expose you to a simplified version of
the x86-64 platform.

Example

Consider the following Decaf program:

class Program {

 int foo(int x) {
 return x + 3;
 }

 void main() {
 int y;

 y = foo(callout("get_int_035"));
 if (y == 15) {
 callout("printf_035", "Indeed! \'tis 15!\n");
 } else {
 callout("printf_035", "What! %d\n", y);
 }
 }

}

One compiled version of this program might look like this:

foo:
 enter $0, $0
 mov 16(%rbp), %rax
 add $3, %rax
 leave
 ret

 .globl main
main:
 enter $(8 * 3), $0

 call get_int_035
 push %rax

 call foo

 add $8, %rsp
 mov %rax, -8(%rbp)

 mov -8(%rbp), %r10
 mov $15, %r11
 cmp %r10, %r11
 mov $0, %r11
 mov $1, %r10
 cmove %r10, %r11
 mov %r11, -16(%rbp)

 mov -16(%rbp), %r10
 mov $1, %r11
 cmp %r10, %r11
 je .fifteen

 push -8(%rbp)
 push $.what
 call printf_035
 add $(2 * 8), %rsp
 jmp .fifteen_done

.fifteen:
 push $.indeed
 call printf_035
 add $(1 * 8), %rsp
.fifteen_done:

 mov $0, %rax
 leave
 ret

.indeed:
 .string "Indeed, \'tis 15!\n"

.what:
 .string "What! %d\n"

We shall dissect this assembly listing carefully and relate it to the Decaf code.
Note that this is not the only possible assembly of the program; it only serves as
an illustration of some techniques you can use in this project phase.

foo:
 enter $(8 * 0), $0
 ...

 leave
 ret

• This is the standard boilerplate code for a function definition. The first line
creates a label which names the entry point of the function. The following
enter instruction sets up the stack frame. After the function is done with
its actual work, the leave instruction restores the stack frame for the
caller, and ret passes control back to the caller.

• Notice that one of the operands to enter is a static arithmetic expression.
Such expressions are evaluated by the assembler and converted into
constants in the final output.

 mov 16(%rbp), %rax
 add $3, %rax

• The purpose of foo is to add 3 to its argument, and return the result.
The arguments to a function are stored in its caller’s frame, at positive
quadword-aligned offsets from %rbp. The k-th argument is stored at
location (8 + 8 k)(%rbp), so the mov instruction moves the value of the
first argument into the %rax register. The next instruction increments the
value in %rax by the literal or immediate value 3. Note that immediate
values are always prefixed by a ‘$’.

• According to the calling convention, a function must place its return value
in the %rax register, so foo has succeeded in returning x + 3.

 .globl main
main:
 enter $(8 * 3), $0
 ...
 mov $0, %rax
 leave
 ret

• The .globl main directive makes the symbol main accessible to modules
other than this one. This is important, because the C run-time library,
which we link against, expects to find a main procedure to call at program
startup.

• The enter instruction allocates space for three quadwords on the stack:
one for a local variable and two for arguments passed to functions.

• At the end of the procedure, we set %rax to 0 to indicate that the program
has terminated successfully.

 call get_int_035
 push %rax

• We call the get_int_035 function, which reads an integer from standard
input and returns it. The function takes no arguments.

• The integer is returned in %rax, and we push it on the stack to be used as
an argument to foo. Notice that we have optimized somewhat here:
another valid approach would have been to store the return value in a
local variable, and then load it back from there to push it as an argument.

 call foo
 add $8, %rsp
 mov %rax, -8(%rbp)

• With the one argument we have already pushed on the stack, we call foo.

• Once foo returns, we need to clean up the stack by removing the
arguments we pushed on to it earlier. Here, we increase %rsp; we could
also have performed a pop instruction.

• Finally, we save the return value stored in %rax to a temporary local
variable. Local variables are stored at negative offsets from %rbp.

 mov -8(%rbp), %r10
 mov $15, %r11
 cmp %r10, %r11
 mov $0, %r11
 mov $1, %r10
 cmove %r10, %r11
 mov %r11, -16(%rbp)

• This sequence demonstrates how a comparison operation might be
implemented using only two registers and temporary storage. We begin
by loading the values to compare, i.e., the return value of foo and the
literal 15, into registers. This is necessary because the comparison
instructions only work on register operands.

• Then, we perform the actual comparison using the cmp instruction. The
result of the comparison is to change the internal flags register.

• Our aim is to store a boolean value—1 or 0—in a local variable as the
result of this operation. To set this up, we place the two possible values, 1
and 0, in registers %r10 and %r11.

• Then we use the cmove instruction (read c-mov-e, or conditional move if
equal) to decide whether our output value should be 0 or 1, based on the
flags set by our previous comparison. The instruction puts the result in
%r11.

• Finally, we store the boolean value from %r11 to a local variable at -
16(%rbp).

 mov -16(%rbp), %r10
 mov $1, %r11
 cmp %r10, %r11
 je .fifteen
 ...
 jmp .fifteen_done
.fifteen:
 ...
.fifteen_done:

• This is the standard linearized structure of a conditional statement. We
compare a boolean variable to 1, and perform a je (jump if equal)
instruction which jumps to its target block if the comparison succeeded. If
the comparison failed, je acts as a no-op.

• We mark the end of the target block with a label, and jump to it at the
end of the fall-through block. Conventionally, such local labels, which do
not define functions, are named starting with a period.

.indeed:
 .string "Indeed, \'tis 15!\n"

.what:
 .string "What! %d\n"

• These labels point to static strings defined in the program. They are used
as arguments to functions.

Reference

This handout only mentions a small subset of the rich possibilities provided by
the x86-64 instruction set and architecture. For a more complete (but still
readable) introduction, consult The AMD64 Architecture Programmer’s Manual,
Volume 1: Application Programming.

http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/24592.pdf
http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/24592.pdf

Registers

In the assembly syntax accepted by gcc, register names are always prefixed with
%. For the first part of the project, we shall use only five of the x86-64’s sixteen
general-purpose registers. All of these registers are 64 bits wide.

Register Purpose Saved across calls
%rax return value No
%rsp stack pointer Yes
%rbp base pointer Yes
%r10
%r11

temporary No

Instruction Set

Each mnemonic opcode presented here represents a family of instructions.
Within each family, there are variants which take different argument types
(registers, immediate values, or memory addresses) and/or argument sizes
(byte, word, double-word, or quad-word). The former can be distinguished from
the prefixes of the arguments, and the latter by an optional one-letter suffix on
the mnemonic.

For example, a mov instruction which sets the value of the 64-bit %rax register to
the immediate value 3 can be written as

 movq $3, %rax

Immediate operands are always prefixed by $. Un-prefixed operands are treated
as memory addresses, and should be avoided since they are confusing.

For instructions which modify one of their operands, the operand which is
modified appears second. This differs from the convention used by Microsoft’s
and Borland’s assemblers, which are commonly used on DOS and Windows.

Opcode Description
Copying values
mov src, dest Copies a value from a register, immediate value or

memory address to a register or memory address.
cmove %src, %dest
cmovne %src, %dest
cmovg %src, %dest
cmovl %src, %dest
cmovge %src, %dest
cmovle %src, %dest

Copies from register %src to register %dest if the
last comparison operation had the corresponding
result (cmove: equality, cmovne: inequality, cmovg:
greater, cmovl: less, cmovge: greater or equal,
cmovle: less or equal).

Stack management
enter $x, $0 Sets up a procedure’s stack frame by first pushing

the current value of %rbp on to the stack, storing the
current value of %esp in %ebp, and finally
decreasing %esp to make room for x quadword-
sized local variables.

leave Removes local variables from the stack frame by
restoring the old values of %rsp and %rbp.

push src Decreases %rsp and places src at the new memory
location pointed to by %rsp. Here, src can be a
register, immediate value or memory address.

pop dest Copies the value stored at the location pointed to by
%rsp to dest and increases %rsp. Here, dest can be
a register or memory location.

Control flow
jmp target Jump unconditionally to target, which is specified

as a memory location (for example, a label).
je target
jne target

Jump to target if the last comparison had the
corresponding result (je: equality; jne: inequality).

Arithmetic and logic
add src, dest Add src to dest.
sub src, dest Subtract src from dest.
imul src, dest Multiply dest by src.
idiv src, dest Divide dest by src.
shr src, dest
shl src, dest

Shift dest to the left or right by src bits.

ror src, dest Rotate dest to the left or right by src bits.
cmp src, dest Set flags corresponding to whether dest is less

than, equal to, or greater than src

Stack Organization

Global and local variables are stored on the stack, a region of memory that is
typically addressed by offsets from the registers %rbp and %rsp. Each procedure
call results in the creation of a stack frame where the procedure can store local
variables and temporary intermediate values for that invocation. The stack is
organized as follows:

Position Contents Frame
8n+16(%rbp) argument n

... ...
16(%rbp) argument 0

Previous

8(%rbp) return address
0(%rbp) previous %rbp value
-8(%rbp)

...
0(%rsp)

locals and temps
Current

Calling Convention

The caller pushes arguments on to the stack in reverse order. Finally, it pushes
the return address and transfers control to the callee. The callee places its return
value in %rax and is responsible for cleaning up its local variables as well as for
removing the return address from the stack. It is not responsible for removing
the arguments.

The call, enter, leave and ret instructions make it easy to follow this calling
convention.

The standard calling convention used by C programs under Linux on x86-64 is a
little different; see System V Application Binary Interface—AMD64 Architecture
Processor Supplement for details. Specifically, it optimizes calls by passing the
first few arguments in registers instead of on the stack. As a result, your
program cannot directly call out to arbitrary C procedures yet. Instead, we have
provided two functions, printf_035 and get_int_035, which have been
specifically adapted to this simplified convention.

Function Description
printf_035(fmt, arg1,
...)

Print a formatted string to standard output, exactly like
printf(3).

get_int_035() Read a single signed decimal integer from standard input
and return its value.

http://www.x86-64.org/documentation/abi.pdf
http://www.x86-64.org/documentation/abi.pdf

	X86-64 Architecture Guide

