Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science

6.035, Fall 1999	Quiz I	Monday, September 20

1) Regular Expressions

15 pts

If the following descriptions define a regular language then write the corresponding regular expression. Otherwise indicate that the language is not regular. Note that only elegant and compact solutions will receive the full 3 points.

- I All strings of 0's and 1's representing the binary numbers which are powers of 2.
- II All Binary Coded Decimal (BCD) numbers. A BCD number is a binary representation of a decimal number where each decimal digit is encoded using a 4 bit representation of its binary value. For example the BCD of 2509 is 0010010100001001.
- III All strings of 0's and 1's where at each 0, the number of consecutive 1's following that 0 is higher than the number of consecutive 1's preceding that 0.
- IV All strings of 0's and 1's that do not have more than 3 consecutive 1's in it.
- V All strings of 0's and 1's with an even number of 0's and an even number of 1's.

2) Grammar for *iScheme*:

can have integer numbers, few keywords

and variables which we will call primitives. The syntax of the language is very simple and as follows:

- A single primitive is a well formed string from the *iScheme* language.
- A combination is a well formed string. A combination is defined as a list of combinations or primitives within a pair of matching parentheses.

Examples of few valid *iScheme* programs are:

82 (+ 8 2 3) (func () (+ 3 4) 5)

The tokens in the language are number, keyword, left_paren or "(" and right_paren or ")".

Write a grammar for *ìScheme*.

3) Parser Construction

You are given the following grammar with the terminal symbols (,) and term and non-terminals $S,\,E$ and L.

- S
 E \$ (1)

 E
 term
 (2)

 E
 (L)
 (3)
- L å (4) L E L (5)
- I If the terminal **term** accepts the character **X**, write 3 well formed strings in this grammar.
 - a)
 - b)
 - c)
- II What are the LR(0) items of the 3^{rd} production?

- III On the next page an LR(0) state diagram and a parse table for the above grammar is given. However the information for the states 5 and 7 are missing.
 - a) Fill in the state diagram by adding items, and creating outgoing edges with labels.
 - b) Fill the appropriate entries in the parse table.

	()	term	\$	Ε	L
1	Shift S4	error	Shift S3	error	Goto S2	
2	error	error	error	Accept		
3	Reduce 2	Reduce 2	Reduce 2	Reduce 2		
4	Shift S4 Reduce 4	Reduce 4	Shift S3 Reduce 4	Reduce 4	Goto S5	Goto S6
5						
6	error	Shift S7	error	error		
7						
8	Reduce 5	Reduce 5	Reduce 5	Reduce 5		