Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science

6.035, Fall 1999 Quiz I Monday, September 20

1) Regular Expressions

If the following descriptions define a regular language then write the corresponding regular expression. Otherwise indicate that the language is not regular. Note that only elegant and compact solutions will receive the full 3 points.

I All strings of 0's and 1's representing the binary numbers which are powers of 2.

II All Binary Coded Decimal (BCD) numbers. A BCD number is a binary representation of a decimal number where each decimal digit is encoded using a 4 bit representation of its binary value. For example the BCD of 2509 is 0010010100001001.

III All strings of 0 's and 1 's where at each 0 , the number of consecutive 1 's following that 0 is higher than the number of consecutive 1 's preceding that 0 .

IV All strings of 0's and 1's that do not have more than 3 consecutive 1's in it.

V All strings of 0's and 1's with an even number of 0's and an even number of 1 's.

2) Grammar for ìScheme:

can have integer numbers, few keywords and variables which we will call primitives. The syntax of the language is very simple and as follows:

- A single primitive is a well formed string from the ìScheme language.
- A combination is a well formed string. A combination is defined as a list of combinations or primitives within a pair of matching parentheses.

Examples of few valid ìScheme programs are:
82
(+823)
(func () (+34)5)
The tokens in the language are number, keyword, left_paren or "(" and right_paren or ")".
Write a grammar for ìScheme.

3) Parser Construction

You are given the following grammar with the terminal symbols (,) and term and nonterminals \mathbf{S}, \mathbf{E} and \mathbf{L}.

S E \$
E term
E (L)
L å
L EL

I If the terminal term accepts the character \mathbf{X}, write 3 well formed strings in this grammar.
a)
b)
c)

II What are the $\operatorname{LR}(0)$ items of the $3^{\text {rd }}$ production?

III On the next page an $\operatorname{LR}(0)$ state diagram and a parse table for the above grammar is given. However the information for the states 5 and 7 are missing.
a) Fill in the state diagram by adding items, and creating outgoing edges with labels.
b) Fill the appropriate entries in the parse table.

Your Name: \qquad

	$($	$)$	term	\$	E	L
1	Shift S4	error	Shift S3	error	Goto S2	
2	error	error	error	Accept		
3	Reduce 2	Reduce 2	Reduce 2	Reduce 2		
4	Shift S4 Reduce 4	Reduce 4	Shift S3 Reduce 4	Reduce 4	Goto S5	Goto S6
5						
6	error	Shift S7	error	error		
7						
8	Reduce 5	Reduce 5	Reduce 5	Reduce 5		

