
MIT OpenCourseWare
http://ocw.mit.edu

6.033 Computer System Engineering
Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

Complexity revisited:
learning from failures

Frans Kaashoek
Lec 26 --- Last one!

Credit: Jerry Saltzer

6.033 in one slide

• Client/server
• RPC
• File abstraction
• Virtual memory
• Threads
• Coordination
• Protocol layering
• Routing protocols

• Reliable packet delivery
• Names
• Replication protocols
• Transactions
• Verify/Sign
• Encrypt/Decrypt
• ACL and capabilities
• Speaks for

Case studies of successful systems: LISP, UNIX, X Windows,
MapReduce, Ethernet, Internet, WWW, RAID, DNS, ….

Principles: End-to-end argument, Open Design, …

Today:
Why do systems fail anyway?

• Complexity in computer systems has no hard
edge

• Learning from failures: common problems
• Fighting back: avoiding the problems
• Admonition & 6.033 theme song

Too many objectives
• Ease of use
• Availability
• Scalability
• Flexibility
• Mobility
• Security

• Networked
• Maintainability
• Performance
• Durable
• ….

Lack systematic methods

Many objectives
+

Few Methods
+

High d(technology)/dt
=

Very high risk of failure

Cover image from Brooks, The Mythical
Man-Month removed due to copyright
restrictions. See the image here:
http://en.wikipedia.org/wiki/File:Mythical_
man-month_(book_cover).jpg

Complexity: no hard edge

• It just gets worse, worse, and worse …

Increasing function

Subjective
complexity

Learn from failure

“The concept of failure
is central to design
process, and it is by
thinking in terms of
obviating failure that
successful designs are
achieved…”
[Petroski]Cover image from Petroski, Design

Paradigms removed due to copyright
restrictions.

Keep digging principle

• Complex systems systems fail for
complex reasons
– Find the cause …
– Find a second cause …
– Keep looking …
– Find the mind-set.

[Petroski, Design Paradigms]

United Airlines/Univac

• Automated reservations, ticketing, flight
scheduling, fuel delivery, kitchens, and
general administration

• Started 1966, target 1968, scrapped
1970, spend $50M

• Second-system effect (First: SABRE)
(Burroughs/TWA repeat)

CONFIRM

• Hilton, Marriott, Budget, American Airlines
• Hotel reservations linked with airline and car

rental
• Started 1988, scrapped 1992, $125M
• Second system
• Dull tools (machine language)
• Bad-news diode

[Communications of the ACM 1994]

IBM Workplace OS for PPC

• Mach 3.0 + binary compatibility with AIX +
DOS, MacOS, OS/400 + new clock mgmt +
new RPC + new I/O + new CPU

• Started in 1991, scrapped 1996 ($2B)
• 400 staff on kernel, 1500 elsewhere
• “Sheer complexity of class structure proved to

be overwhelming”
• Inflexibility of frozen class structure
• Big-endian/Little-endian not solved

[Fleish HotOS 1997]

Advanced Automation System
• US Federal Aviation Administration
• Replaces 1972 Air Route Traffic Control

System
• Started 1982, scrapped 1994 ($6B)
• All-or-nothing
• Changing specifications
• Grandiose expectations
• Contract monitors viewed contractors as

adversaries
• Congressional meddling

London Ambulance Service
• Ambulance dispatching
• Started 1991, scrapped in1992 (20 lives lost

in 2 days, 2.5M)
• Unrealistic schedule (5 months)
• Overambitious objectives
• Unidentifiable project manager
• Low bidder had no experience
• No testing/overlap with old system
• Users not consulted during design

[Report of the Inquiry Into The London Ambulance Service 1993]

Recurring problems
• Excessive generality and ambition
• Bad ideas get included
• Second-system effect
• Mythical Man Month
• Wrong modularity
• Bad-news diode
• Incommensurate scaling

Fighting back:
control novelty

• Source of excessive novelty:
– Second-system effect
– Technology is better
– Idea worked in isolation
– Marketing pressure

• Some novelty is necessary; the difficult part is
saying No.

• Don’t be afraid to re-use existing components
– Don’t reinvent the wheel
– Even if it takes some massaging

Fighting back:
adopt sweeping simplifications

• Processor, Memory, Communication
• Dedicated servers
• N-level memories
• Best-effort network
• Delegate administration
• Fail-fast, pair-and-compare
• Don’t overwrite
• Transactions
• Sign and encrypt

Fighting back:
design for iteration,
iterate the design

• Something simple working soon
– Find out what the real problems are

• One new problem at a time
• Use iteration-friendly design

– E.g., Failure/attack models

“Every successful complex system is found to have evolved
from a successful simple system”

Fighting back:
find bad ideas fast

• Question requirements
– “And ferry itself across the Atlantic” [LHX light

attack helicopter]

• Try ideas out, but don’t hesitate to scrap
• Understand the design loop

Requires strong, knowledgeable management

The design loop

• Find flaws fast!

Initial
design Draft design coding testing deployed

monthsmin hours days weeks

Fighting back:
find flaws fast

• Plan, plan, plan (CHIPS, Intel processors)
• Simulate, simulate, simulate

– Boeing 777 and F-16
• Design reviews, coding reviews, regression

tests, daily/hourly builds, performance
measurements

• Design the feedback system:
– Alpha and beta tests
– Incentives, not penalties, for reporting errors

Fighting back:
conceptual integrity

• One mind controls the design
– Macintosh
– Visicalc spreadsheet
– UNIX
– Linux

• Good esthetics yields more successful systems
– Parsimonious, Orthogonal, Elegant, Readable, …

• Few top designers can be more productive than a
larger group of average designers.

Summary
• Principles that help avoiding failure

– Limit novelty
– Adopt sweeping simplifications
– Get something simple working soon
– Iteratively add capability
– Give incentives for reporting errors
– Descope early
– Give control to (and keep it in) a small design team

• Strong outside pressures to violate these principles
– Need strong knowledgeable managers

Admonition

Make sure that none of the systems you
design can be used as disaster

examples in future versions of this
lecture

6.033 theme song
‘Tis the gift to be simple, ‘tis the gift to be free,
‘Tis the gift to come down where we ought to be;
And when we find ourselves in the place just right,
‘Twill be in the valley of love and delight.

When true simplicity is gained
To bow and to bend we shan’t be ashamed;
To turn, turn will be our delight,
Till by turning, turning we come out right.

[Simple Gifts, traditional Shaker hymn]

	Complexity revisited:�learning from failures
	6.033 in one slide
	Today:�Why do systems fail anyway?
	Too many objectives
	Complexity: no hard edge
	Learn from failure
	Keep digging principle
	United Airlines/Univac
	CONFIRM
	IBM Workplace OS for PPC
	Advanced Automation System
	London Ambulance Service
	Recurring problems
	Fighting back: �control novelty
	Fighting back: �adopt sweeping simplifications
	Fighting back:�design for iteration, iterate the design
	Fighting back: �find bad ideas fast
	The design loop
	Fighting back: �find flaws fast
	Fighting back:�conceptual integrity
	Summary
	Admonition
	6.033 theme song

