
MIT OpenCourseWare
http://ocw.mit.edu

6.033 Computer System Engineering
Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

Nickolai Zeldovich

high-level ideas for today:
public key authentication
certificate authorities
 session keys
network protocols and attacks: be explicit

Authentication, Authorization
=============================

--- board 1 ---

setting: client and server sending messages over the internet
want to achieve: authentication, authorization, confidentiality

last time: how to authenticate requests given a shared secret
stock trading example: "buy 100 shares of google"
password, hash the request and password together

 [pw] [pw]

C --- I --- S

 <---------
-
m, H(m + pw) m: "GOOG shares cost $100"

 ---------->

 m, H(m + pw) m: "buy 100 shares of GOOG"

--- board 2 ---

now: what to do if we don't have a shared secret ahead of time?
 e.g. stock quotes coming from web server

 want a pair of functions SIGN and VERIFY

Shared Public
 key key

SIGN(m, K1) -> sig H(m+K1) m^e mod N

VERIFY(m, sig, K2) sig==H(m+K2) sig^d mod N == m

MAC Signature

 SLIDE: RSA reminder

TELL STUDENTS that both of these examples are crippled
want to use HMAC and better public-key signature schemes
these are just for your intuition

 formalize previous password-based authentication: MAC
new: different sign, verify keys
key property of public-key signatures: others can verify but not generate!

attacks on SIGN, VERIFY for authentication [right side of board?]
crypto attacks

figure out the key or find ways to violate crypto's guarantees
authentication

modification

reordering

extending

splicing

 for example RSA as-described is vulnerable to multiplying messages
also need to take care to condense string into an integer

--- board 3 ---

what does it even mean to authenticate someone in this case?
 how do you know what public key to use for someone?
idea: split up into authenticating a name, and then trusting a name
someone is going to manage names for us

 symmetric

S <-> PW <-> trust

 asymmetric
S <-> K1 <-> name <-> trust

 \----V----/

trust someone to tell us these bindings

--- board 4 ---

talk to a server, get a response and signature with server's key
now talk to a key-naming server to ask it, what's this guy's name?
key-naming server responds, along with its own signature
must trust key-naming server ahead of time
otherwise might need to talk to another key-naming server...

SIGN("GOOG is $100", K1), K2

 [C knows K2_ca]

C <--------- S

^

|

\----> CA

"Who is K2?"

SIGN("K2 is quotes.nasdaq.com", K1_ca)

--- board 5 ---

idea: don't actually need to query the key-naming server all the time
give key-naming server's signed response to original server
typically called a "certificate"

 [K2_ca]

C <--------------- S

m: "GOOG is $100"

SIGN(m, K1_q), K2_q

SIGN("K2_q is quotes.nasdaq.com", K1_ca)

delegation: certificates might be chained
otherwise everyone has to talk to the root certificate authority

this is roughly how DNSSEC works
user trusts the top-level certificate

SIGN("K2_q is quotes.nasdaq.com", K1_nasdaq), K2_nasdaq

SIGN("K2_nasdaq is *.nasdaq.com", K1_ca)

THE ENTIRE CHAIN HAS TO BE TRUSTED!
 and infact the weakest possible way to construct the chain is the problem

how would one of these CAs decide who the next guy is?
used to be that you have to go to a town office and get a business license

can specify any name you want, can probably find some town that's lax
now it's just verified by email on your domain registration

one popular CA will send email to webmaster@domain.com to ask if it's OK

SLIDE: easy to spoof this process, even for well-known companies!
reiterate: weakest link in the chain is what matters

SLIDE: rarely-used mechanisms are a disaster for security
Verisign designed a certificate-revocation list for this purpose
not part of the usual workflow, so never tested!
indeed, when time came to use it, noone knew how to find this CRL!

in practice users would think that a secure website was secure, end of story
didn't bother thinking about what server they were actually talking to
new kind of certificates now that involve "extended validation"
 pops up a green bar showing the name of the company that was validated

alternative: blindly trust & remember keys
vulnerable first time around
 SSH
 add a certificate exception in a browser

--- board 6 ---

ok, now have public keys for both parties, what next?
asymmetric encryption/signatures are computationally-expensive
most protocols use public keys to establish symmetric session key

then use symmetric encryption or MACs for subsequent messages

session key protocol: denning-sacco
A wants to talk with B, need to establish symmetric session key
1. A -> S: A, B
2. S -> A: SIGN({A, Ka}, Ks), SIGN({B, Kb}, Ks)
3. 	 A picks a session key Kab

A -> B: SIGN({A, Ka}, Ks), ENCRYPT(SIGN(Kab, Ka), Kb)

4. A and B communicate using Kab to do symmetric encryption/MACs

(usually not a good idea to use same key for two purposes, so
maybe Kab is actually two keys, one for encrypt, one for MAC)

--- board 7 --- [to the right?]

desired goals

mailto:webmaster@domain.com

 1. secrecy: only A, B know Kab
2. authentication: A, B know other's identity

 is this true?
1. A knows Kab, and the only person that can decrypt msg 3 is B
2. A knows the only person that can decrypt Kab must be B

B knows the only person that could have sent Kab was A (signed!)

turns out the protocol is broken!
recipient can't really infer the party on the other end is A!
suppose B was malicious (e.g. A visited a malicious web site)
can impersonate A to some other party (e.g. another web site)

.. get {C:Kc}_Ks
3. B -> C:

 SIGN({A, Ka}, Ks), ENCRYPT(SIGN(Kab, Ka), Kc)

what recipient can infer is that A signed this message, but so what?

it wanted to use Kab to talk to someone, but not necessarily us (rcpt)!

