
MIT OpenCourseWare
http://ocw.mit.edu

6.033 Computer System Engineering
Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

Lec 19 : Nested atomic actions, and multisite atomicity

Sam Madden

So far, we've focused on the case where transactions are running on just one system,

and where all of transaction either commits or aborts.

Today -- several additional goals

- Nested atomic actions -- the ability to have sub-actions which may or may not
succeed, that don't affect the outcome of the whole action (nested atomic actions)

- Multisite actions -- transactions that span multiple sites

(Distributed transactions); why?

- Performance (2 machines store a database, both machines participate
in querying or updating of their part of the DB.)

- Administrative -- two databases owned by two different organizations,
want to run commands that span both

Example: travel site:

Single System:

Wanted nested actions to allow subtransactions to run to completion without
committing, and then commit subtransactions

Begin 	(Parent P)
Begin (A)

Reserve JB

End

Begin (B)

Reserve USAir ---> if this aborts, JB reservation isn't lost
End ---> if this aborts, P can try something else without

losing JB reservation
End

Parent P
Sub xaction A | Commit iff

Sub xaction B | P commits

Goals:

A + B's effects aren't visible externally unless P commits.

(Once P commits, A + B's effects both visible)

A + B can independently abort

B shouldn't see A's effects unless A has finished.

Once A has reached and, it shouldn't abort unless A aborts (since B
may use its results)

We are going say that the a nested transaction that has reached its "End"
has "tentatively committed" -- it is ready to commit, but is waiting for outcome of
its parent to be decided.

Changes to protocol:
Locking:

When to release A/B's locks? Before P commits? No -- because P might abort!
Only after P commits.

But B should be able to read A's data after it has reached "End".

Change lock acquire protocol to check to see if waiting for a lock

from a tentatively committed transactions w/ same parent

Logging:
Need to keep separate begin / end for subactions, in case one of them aborts

and we crash, so we are sure its effects are undone.

During log processing, when we encounter a sub-transaction, only want to
commit it if its parent commits

Begin P
Begin A
UP seatmap1
Tentative Commit A (Parent P)
Begin B
UP seatmap 2
Tentative Commit B (Parent P)
End P

Recovery: scan backwards, determining winners, undoing losers

(e.g., sub actions that abort or sub actions whose parent aborted)
scan forwards, redoing winners

Multisite Actions

Similar protocol and rules -- suppose now that JB and USAir are separate reservation
systems, each with their own data.

There is one coordinator that the user connects to and who makes reservations on
these subsystems. Diagram (with internet)

Like before, want JB to commit only if USAir commits, and vice versa.

Harder than before, because now JB / USAir might crash independently, and

messages might be lost / reordered.

Separate logs for each site, including coordinator.

To deal with message losses, going to use a protocol like exactly once RPC.

Diagram:

Basic protocol is as follows:

Coordinator sends tasks to workers

Once all tasks are done, coordinator needs to get workers to enter prepared
(tentatively committed) state

Tentatively committed here means workers will definitely commit if coordinator tells
them to do so; coordinator can unilaterally commit

Protocol (with no loss): (prepare, vote, commit, ack)

Why not just send COMMIT messages to all sites once they've finished their share of
the work?

One of them might fail during COMMIT processing, which would require us to be able
to ABORT suboords that have already committed.

Suppose messages are lost? Use timeouts to resend prepare, commit messages

Crashes? Need to make sure that logs on workers ensure that they can recover into

the tentatively committed state.

Log records:

Write TC record on workers before "Yes" vote.

Commit record still written on coordinator -- that is commit point of the whole
transaction

Coordinator also writes a "done" message

Suppose worker crashes:

Before prepare?

After prepare?

Suppose coordinator crashes:

Before prepare

After sending some prepares

After writing commit?

After writing done?

How does coordinator respond to "TX?" inquiry? Does it keep state of all xactions

forever? (No -- once it has received acks from all workers, it knows they have received

outcome.)

Notice that workers cannot forget state of transaction until after they hear commit /

abort from coordinator, even if they crash. This makes protocol somewhat impractical

in cross-organizational settings.

What to do instead?

Use compensating actions (e.g., airlines will allow you to cancel a purchase free of

charge within a few hours of making a reservation.)

2PC provides a way for a set of distributed nodes to reach agreement (e.g., commit or

abort.) Note, however, that it only guarantees that all nodes eventually learn about

outcome, not that they agree at the same instant.

"2 Generals Paradox" (slides)

Can never ensure that agreement happens in bounded time (though it will eventually
happen with high probability.)

