
Problem Set 2: Fastest Way to Get Around MIT 
Released:  Monday, October 31, 2016. 
Due:  11:59pm, Wednesday, November 9, 2016. 

Introduction 
In this problem set you will solve a simple optimization problem on a graph. Specifically, you will find 
the shortest route from one building to another on the MIT campus given that you wish to constrain 
the amount of time you spend walking outdoors (in the cold). 

Getting Started 
Download Files 

1. ps2.py : code skeleton 

2. graph.py : a set of graph-related data structures (Digraph, Node, and Edge) that 

you must use 

3. mit_map.txt : a sample data file that holds the information about an MIT campus 

map. 

Introduction 

 
Here is the map of the MIT campus that we all know and love. From the text input file, mit_map.txt , 
you will build a representation of this map in Python using the graph-related data structures that we 
provide. 
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https://stellar.mit.edu/S/course/6/fa11/6.00/courseMaterial/homework/assignments/assignment11/assignment/2/ps10.zip


Each line in mit_map.txt  has 4 pieces of data in it in the following order separated by a single space 
(space-delimited): the start building, the destination building, the distance in meters between the two 
buildings, and the distance in meters between the two buildings that must be spent outdoors. For 
example, suppose the map text file contained the following line: 
 

10     32     200     40 
 
This means that the map contains an edge from building 10 (start location) to building 32 (end 
location) that is 200 meters long, where 40 of those 200 meters are spent outside. During the day, 
routes are crowded and only allow for you to travel in one direction.  
 

Problem 1: Creating the Data Structure Representation 
In this problem set, we are dealing with edges that have different weights. In the figure below, the 
blue numbers show the cost of traversing an edge in terms of total distance traveled, while the green 
numbers show the cost of traversing an edge in terms of distance spent outdoors. Note that the 
distance spent outdoors for a single edge is always less than or equal to the total distance it takes to 
traverse that edge. Now the cost of going from “a” to “b” to “e” is a total distance traveled of 22 
meters, where 14 of those meters are spent outdoors. 

 
In graph.py , you’ll find the Node, and Edge classes, which do not store information about weights 
associated with each edge. You will also find skeletons of the WeightedEdge  and Digraph  classes, 
which we will use in the rest of this problem set. Complete the WeightedEdge  and Digraph  classes 
such that the unit tests at the bottom of graph.py  pass. Your WeightedEdge  class will need to 
implement the __str__  method (which is called when we use str() on a WeightedEdge  object) as 
follows: 
 
Suppose we have a WeightedEdge  object e containing by the following information: 
Source node name: 'a' 
Destination node name: 'b' 
Total distance along the edge: 15 
Outdoor distance along the edge: 10 
Then str(e)  with the above information should yield: 
a->b (15, 10) 
 
For Digraph, you will need to implement the add_node  and add_edge  methods. 
 

2



Problem 2: Building up the Campus Map 
For this problem, you will be implementing the load_map(map_filename)  function in ps2.py, which 
reads in data from a file and builds a directed graph to properly represent the MIT campus map 
according to the data. Think about how you plan on representing your graph before implementing 
load_map .  
 

Problem 2a: Designing your graph 
 
Decide how the campus map problem can be modeled as a graph. Write a description of your design 
approach as a comment under the Problem #2 heading in ps2.py . What do the graph’s nodes 
represent in this problem? What do the graph’s edges represent in this problem?  Where are the 
distances represented? 
 
#Problem 2a: Designing your graph 
# 
# What do the graph’s nodes represent in this problem? What 
# do the graph’s edges represent? Where are the distances  
# represented?  
# 
 

Problem 2b: Implementing load_map 
 
Implement load_map  according to the specifications provided in the docstring.  You may find the 
following link useful if you need help with reading files in Python (refer to section 7.2): 
 
https://docs.python.org/3/tutorial/inputoutput.html 
 

Problem 2c: Testing load_map 
 
Test whether your implementation of load_map is correct by creating a text file, test_load_map.txt , 
using the same format as ours, loading your txt file using your load_map function, and checking to 
see if your directed graph has the nodes and edges it should.  You can add your call to load_map 
directly below where load_map is defined, and comment out the line when you're done testing (It may 
also help to comment out the __main__ code block to clean up your output while testing this 
function). Your test case should have at least 3 nodes and 3 edges. For example, if you had Nodes 
“a”, “b”, and “c” and edges WeightedEdge(a, b, 10, 9) , WeightedEdge(a, c, 12, 2) , and 
WeightedEdge(b, c, 1, 1) , if you were to print out your graph, you would see something like: 
 
Loading map from file... 
a->b (10, 9) 
a->c (12, 2) 
b->c (1, 1) 
 
Submit test_load_map.txt . Also, include the lines used to test load_map  at the location specified in 
ps2.py, but comment them out.  
 

3

https://docs.python.org/3/tutorial/inputoutput.html


Problem 3: Find the Shortest Path using Optimized Depth First Search 
We can define a valid path from a given start to end node in a graph as an ordered sequence of nodes 
[n1, n 2, ... n k], where n 1 to n k are existing nodes in the graph and there is an edge from n i to n i+1 for 

i=1 to k - 1. In Figure 2, each edge is unweighted, so you can assume that each edge has distance 1, 
and then the total distance traveled on the path is 4. 

 
Figure 2. Example of a path from start to end node. 

 
In our campus map problem, the total distance traveled on a path is equal to the sum of all total 
distances traveled between adjacent nodes on this path. Similarly, the distance spent outdoors on 
the path is equal to the sum of all distances spent outdoors on the edges in the path. 
 
Depending on the number of nodes and edges in a graph, there can be multiple valid paths from one 
node to another, which may consist of varying distances. We define the shortest path between two 
nodes to be the path with the least total distance traveled. You are trying to minimize the distance 
traveled while not exceeding the maximum distance outdoors.  
 
How do we find a path in the graph? Work off the depth-first traversal algorithm covered in lecture to 
discover each of the nodes and their children nodes to build up possible paths. Note that you’ll have to 
adapt the algorithm to fit this problem. Read more about depth-first search here. 
 

Problem 3a: Objective function 
 
Write a sentence describing what is the objective function for this problem. 
 
# Problem 3a: Objective function 
# 
# What is the objective function for this problem? What are the constraints?  
# 
 

Problem 3b: Implement get_best_path 
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http://en.wikipedia.org/wiki/Depth-first_search


Implement the helper function get_best_path . Assume that any variables you need have been set 
correctly in directed_dfs . Below is some pseudocode to help get you started.  
 

if start and end are not valid nodes: 
         raise an error 
elif start and end are the same node: 
         update the global variables appropriately 
else: 
         for all the child nodes of start 
                  construct a path including that node 
                  recursively solve the rest of the path, from the child node to the end node 
 
return the shortest path 

 
 
Notes: 

1. Graphs can contain cycles. A cycle occurs in a graph if the path of nodes leads you back to a 
node that was already visited in the path. When building up possible paths, if you reach a 
cycle without knowing it, you could get stuck indefinitely by extending the path with the same 
nodes that have already been added to the path. 

 
Figure 3. Example of a cycle in a graph. 

 
2. If you come across a path that is longer than your shortest path found so far, then you know 

that this longer path cannot be your solution, so there is no point in continuing to traverse its 
children and discover all paths that contain this sub-path. You must include this optimization 
in your solution in order to receive full credit. 

3. While not required, we strongly recommend that you use recursion to solve this problem. 
 

Problem 3c: Implement directed_dfs 
 
Implement the function directed_dfs(digraph, start, end, max_total_dist, 
max_dist_outdoors)  that uses this optimized depth first search to find the shortest path in a 
directed graph from start node to end node under the following constraints: the total distance 
travelled is less than or equal to max_total_dist , and the total distance spent outdoors is less than or 
equal to max_dist_outdoors . If multiple paths are still found, then return any one of them. If no path 
can be found to satisfy these constraints, then raise a ValueError exception. 
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All you are doing in this function is initializing variables, calling your recursive function, and returning 

the appropriate path. Don’t write too much code--our solution has less than 10 lines! Test your code 

by uncommenting the code at the bottom of ps5.py .  

 
Hand-In Procedure 
1. Save 
Save your solutions as graph.py, ps2.py, and  test_load_map.txt 
  
2. Time and Collaboration Info 
At the start of each file, in a comment, write down the number of hours (roughly) you spent on 
the problems in that part, and the names of the people you collaborated with. For example: 
  # 6.0002 Problem Set 2 
  # Name: Jane Lee 
  # Collaborators: John Doe 
  # Time: 
  # 
  ... your code goes here ... 
  

3. Sanity checks 
After you are done with the problem set, do sanity checks. Run the code and make sure it can 
be run without errors and passes our test cases as well as your own.
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