
Problem Set 4
Handed out​: October 5, 2016
Due: October 12, 2016 @ 11:59 PM

This problem set has two parts. The first part allows you to practice thinking about
problems in a recursive fashion, taking advantage of the idea that one can reduce
the problem to a simpler version of the same problem. In ​ps4a.py ​, you will write a
recursive function that takes as input a string and figures out all the possible
reorderings of the characters in the string.

The second part will give you experience in thinking about problems in terms of
classes, each instance of which contains specific attributes as well as methods for
manipulating them. In ​ps4b.py ​, you will use object-oriented programming to write
a Caesar/shift cipher. In ps4c.py​ ​, you will use object-oriented programming to
write a very simple substitution cipher.

As always, please do not rename the files we provide you with, change any of the
provided helper functions, change function/method names, or delete provided
docstrings. You will need to keep ​words.txt ​ and ​story.txt ​ in the same folder in
which you store ​ps4a.py, ps4b.py ​ and ​ps4c.py ​.

Finally, please consult the Style Guide on as we will be taking point
deductions for violations (e.g. non-descriptive variable names and uncommented
code). For this pset style guide numbers 6, 7 and 8 will be highly relevant so make
sure you go over those before starting the pset, and again before you hand it in!

Part A: Permutations of a string

​ A ​permutation is simply a name for a reordering. So the permutations of the string
‘abc’ are ‘abc’, ‘acb’, ‘bac’, ‘bca’, ‘cab’, and ‘cba’. Note that a sequence is a
permutation of itself (the trivial permutation). For this part of the pset you’ll need
to write a ​recursive​ function ​get_permutations ​ that takes a string and returns a
list of all its permutations. You will find this function helpful later in the pset for part
C.

A couple of notes on the requirements: ​Recursion MUST be used​, global variables
may NOT be used. Additionally, it is okay to use loops to code the solution. The
order of the returned permutations does not matter. Please also avoid returning
duplicates in your final list.

1

Suggested Approach

In order to solve any recursive problem, we must have at least one base case and a
recursive case (or cases). We can think of our base case as the simplest input we
could have to this problem (for which determining the solution is trivial and requires
no recursion) -- for this approach, our base case is if ​sequence ​ is a single character
(there’s only one way to order a single character).

If ​sequence ​ is longer than one character, we need to identify a simpler version of
the problem that, if solved, will help us easily find all permutations for sequence​ ​.
The pseudocode below gives one approach to recursively solving this problem.

Given an input string ​sequence ​:

● Base case:
○ if ​sequence ​ is a single character, there’s only one way to order it

■ return a singleton list containing sequence​
● Recursive case:

○ suppose we have a method that can give us a list of all permutations
of ​all but the first character​ in ​sequence ​ (Hint: think recursion)

○ then the permutations of all characters in ​sequence ​ would be ​all the
different ways​ we can insert the first character into each permutation
of the remaining characters

​ ■ example: if our word was ‘bust’, we hold out the character ‘b’
and get the list [‘ust’, ‘sut’, ‘stu’, ‘uts’, ‘tus’, ‘tsu’]

● then ‘ust’ gives us: ‘b​ ​ust’, ‘ub​ ​st’, ‘us​b​t’, ‘ust​b​’
● ‘sut’ gives us: ‘b​ ​sut’, ‘s​b​ut’, ‘su​b​t’, ‘sut​b​’
● and so on …

Implement the ​get_permutations(sequence) ​ function found in ​ps4a.py
according to the specifications in the docstring. Write three test cases for
your function in comments under if __name__ == ‘__main__’​ ​. Each test
case should display the input, expected output, and actual output. See the
if __name__ == ‘__main__’ ​for an example.

2

Part B: Cipher Like Caesar

Ever want to relive the glory days of your youth and pass secret messages to your
friends? Well, here is your chance! But first, here is some vocabulary:

● Encryption - the process of obscuring or encoding messages to make them
unreadable

● Decryption - making encrypted messages readable again by decoding them
● Cipher - algorithm for performing encryption and decryption
● Plaintext - the original message
● Ciphertext - the encrypted message. Note: a ciphertext still contains all of

the original message information, even if it looks like gibberish.

Caesar Cipher

The idea of the Caesar Cipher is to pick an integer and shift every letter of your
​ message by that integer. ​In other words, suppose the shift is k

th
​ . Then, all instances

​ of the ​i ​ letter of the alphabet that appear in the plaintext should become the (i​ +
​ k)​th​ letter of the alphabet in the ciphertext. You will need to be careful with the case

​ ​ in which ​i + ​k > 26 (the length of the alphabet).

We will treat uppercase and lowercase letters individually, so that uppercase letters
are always mapped to an uppercase letter, and lowercase letters are always
mapped to a lowercase letter. If an uppercase letter maps to “A”, then the same
lowercase letter should map to “a”. Punctuation and spaces should be retained and
not changed. For example, a plaintext message with a comma should have a
corresponding ciphertext with a comma in the same position.

Examples:

plaintext

‘abcdef’
‘Hello, World!’

‘’

shift

2
4

any value

ciphertext

‘cdefgh’
‘Lipps, Asvph!’

‘’

Classes and Inheritance

This is your first experience coding with classes! Get excited! We will have a
Message ​ class with two subclasses PlaintextMessage​ ​ and CiphertextMessage​ ​.
Message ​ contains methods that could be used to apply a cipher to a string, either to

3

encrypt or to decrypt a message (since for Caesar codes this is the same action).
PlaintextMessage ​ has methods to encode a string using a specified shift value;
our class will always create an encoded version of the message, and will have
methods for changing the encoding. CiphertextMessage​ ​ contains a method used
to decode a string.

When you have completed your implementation, you can either create a
CiphertextMessage ​ instance using an encrypted string that someone provides you
and try to decrypt it; or you can encrypt your own ​PlaintextMessage ​instance,
then create a ​CiphertextMessage ​instance from the encrypted message within the
PlaintextMessage ​instance, and try to decrypt it and see if it matches the original
plaintext message.

Your job will be to fill methods for all three of these classes according to
the specifications given in the docstrings of ​ps4b.py​.​ Please remember that
you never want to directly access attributes outside a class - that’s why you have
getter and setter methods. Don’t overthink this; a getter method should just return
an attribute and a set method should just set an attribute equal to the argument
passed in. Although they seem simple, we need these methods in order to make
sure that we are not manipulating attributes we shouldn’t be. Directly using class
attributes outside of the class itself instead of using getters and setters will result in
a point deduction – and more importantly can cause you headaches as you design
and implement object class hierarchies.

Rules
You do not have to use recursion in Part B, but you are welcome to. There are a
couple of helper functions that we have implemented for you: load_words​ ​ and
is_word ​. You may use these in your solution and you do not need to understand
them completely, but should read the associated comments. You should read and
understand the helper code in the rest of the file and use it to guide your solution.

Part 1: Message

Fill in the methods of the ​Message ​ class found in ps4b.py​ ​ according to the
specifications in the docstrings.

We have provided skeleton code in the ​Message ​ class for the following functions -
your task is to implement them. Please see the docstring comment with each
function for more information about the function specification.

● __init__(self, text)
● The getter methods

4

○ get_message_text(self)
● Note: This should return an immutable version of the message

text we added to this object in init. Luckily, strings are already immutable
objects, so we can simply return that string.

○ get_valid_words(self)
● Note: this should return a COPY of self.valid_words to prevent

someone from accidentally mutating the original list.
● build_shift_dict(self, shift)

● Note: you may find the string​ ​ module’s ​ascii_lowercase ​constant
helpful here.

● apply_shift(self, shift)
○ Hint: use ​build_shift_dict(self, shift). ​ Remember that spaces

and punctuation should not be changed by the cipher.

Part 2: PlaintextMessage

Fill in the methods of the ​PlaintextMessage ​ class found in ​ps4b.py
according to the specifications in the docstrings.

The methods you should fill in are:

● __init__(self, text, shift)
○ Use the parent class constructor to make your code more concise.

Take a look at Style Guide #7 if you are confused.
● The getter methods

○ get_shift(self)
○ get_encryption_dict(self)

■ Note: this should return a COPY of self.encryption_dict to
prevent someone from mutating the original dictionary.

○ get_message_text_encrypted(self)
● change_shift(self, shift)

○ Hint: think about what other methods you can use to make this easier.
It shouldn’t take more than a couple lines of code

Part 3: CiphertextMessage

Don’t you want to know what your friends are saying? Given an encrypted
message, if you know the shift used to encode the message, decoding it is trivial.
If ​message ​ is the encrypted message, and s​ ​ is the shift used to encrypt the
message, then ​apply_shift(message, 26-s) ​ gives you the original plaintext
message. Do you see why?

The problem, of course, is that you don’t know the shift. But our encryption

5

method only has 26 distinct possible values for the shift! We know English is the
main language of these emails, so if we can write a program that tries each shift
and maximizes the number of English words in the decoded message, we can
decrypt their cipher!

Fill in the methods of the ​CiphertextMessage ​ class found in ​ps4b.py
according to the specifications in the docstrings.

The methods you should fill in are:

● __init__(self, text)
○ Hint: use the parent class constructor to make your code more

concise. Take a look at Style Guide #7 if you are confused.
● decrypt_message(self)

○ Hint: you may find the helper function ​is_word(wordlist, word) ​ and
the string method ​split ​ useful
(​https://docs.python.org/3/library/stdtypes.html#str.split​, or
alternatively ​help(str.split) ​ in your console)

○ Note: ​is_word ​will ignore punctuation and other special characters
when considering whether a word is valid.

Part 4: Testing

Write two test cases for PlaintextMessage​ ​ and two test cases for
CiphertextMessage ​ in comments under if __name__ == ‘__main__’​ ​. Each
test case should display the input, expected output, and actual output. An
example can be found in ​ps4b.py ​. Then, decode the file story.txt and write
the best shift value used to decrypt the story, and unencrypted story in a
comment underneath your test cases.

Hint: The skeleton code contains a helper function ​get_story_string ​that returns
the encrypted version of the story as a string. Create a C​ iphertextMessage ​ object
using the story string and use ​decrypt_message ​ to return the appropriate shift
value and unencrypted story.

6

https://docs.python.org/2/library/stdtypes.html#str.split

Part C: Substitution Cipher

A better way to hide your messages is to use a substitution cipher. In this
approach, you create a hidden coding scheme, in which you substitute a randomly
selected letter for each original letter. For the letter “a”, you could pick any of the
other 26 letters (including keeping “a”), for the letter “b”, you could then pick any
of the remaining 25 letters (other than what you selected for “a”) and so on. You
can probably see that the number of possibilities to test if you wanted to decrypt a
substitution ciphered message is much larger than for a Caesar cipher (26!
compared to 26). So for this problem, we are going to just consider substitution
ciphers in which the vowels are encrypted, with lowercase and uppercase versions
of a letter being mapped to corresponding letters. (For example, ‘A’ -> ‘O’ then
‘a’->’o’).

Classes and Inheritance

Similar to the Caesar cipher, we are going to use classes to explore this idea. We
will have a ​SubMessage ​ class with general functions for handling Substitution
Messages of this kind. We will also write a class with a more specific
implementation and specification, ​EncryptedSubMessage, ​ that inherits from the
SubMessage ​ class.

Your job will be to fill methods for both classes according to the specifications given
in the docstrings of ​ps4c.py ​. Please remember that you never want to directly
access attributes outside a class - that’s why you have getter and setter methods.
Again, don’t overthink this; a get method should just return a variable and a set
method should just set an attribute equal to the parameter passed in. Although
they are simple, we need these methods in order to make sure that we are not
manipulating attributes we shouldn’t be. Directly using class attributes outside of
the class itself instead of using getters and setters will result in a point deduction –
and more importantly can cause you headaches as you design and implement
object class hierarchies.

Part 1: SubMessage

​ ​ ​ ​

We have provided skeleton code for the following methods in the SubMessage​ ​ class
- your task is to implement them. Please see the docstring comment with each
function for more information about the function specification.

7

​ ​

​ ​
​

​ ​

Fill in the methods of the ​SubMessage ​ class found in ​ps4c.py ​ according to
the specifications in the docstrings.

​ ​

● __init__(self, text)
● The getter methods

○ get_message_text(self)
○ get_valid_words(self)

■ Note: this should return a COPY of self.valid_words to prevent
someone from mutating the original list.

● build_transpose_dict(self, vowels_permutation)
● apply_transpose(self, transpose_dict)

● Note: Pay close attention to the input specification when testing.

Part 2: EncryptedSubMessage

Fill in the methods of the ​EncryptedSubMessage ​ class found in ​ps4c.py
according to the specifications in the docstrings.

Don’t you want to know what your friends are saying? Given an encrypted
message, if you know the substitution used to encode the message, decoding it is
trivial. You could just replace each letter with the correct, decoded letter.

The problem, of course, is that you don’t know the substitution. Even if we keep all
the consonants the same, we still have a lot of options for trying different
substitutions for the vowels. As with the Caesar cipher, we can use the trick of
testing (giving a proposed substitution) to see if the decoded words are real English
words. We then keep the decryption that yields the most valid English words. Note
that we have provided constants containing the values of the uppercase vowels,
lowercase vowels, uppercase consonants, and lowercase consonants, for your
convenience.

In this part, you can use your ​get_permutations ​ method from part A (it is already
imported for you in the beginning of ps4c.py).

The methods you should fill in are:
● __init__(self, text)

○ Hint: use the parent class constructor to make your code more
concise. Take a look at Style Guide #7 if you are confused.

● decrypt_message(self)

Part 3: Testing

Write two test cases for ​SubMessage ​ and two test cases for

8

EncryptedSubMessage ​ in comments under if __name__ == ‘__main__’​ ​.
Each test case should contain the input, expected output, function call used,
and actual output.

​ ​ ​ ​ ​

​

​ ​ ​ ​ ​ ​

9

MIT OpenCourseWare
https://ocw.mit.edu

6.0001 Introduction to Computer Science and Programming in Python
Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu
https://ocw.mit.edu/terms

