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Lecture 3 
 

Today I introduce instrumental variables in the context of Angrist and Evan’s AER paper 

looking at the effects labor supply of women from additional children. 

 

As in the example presented last class, we can frame today’s question in terms of wanting to 

know counterfactual outcomes, this time from having an additional child.    

 

Let 1=iD  indicate woman i  has ‘kids’ and 0=iD  if not. I’m going to stick with a binary 

conditional variable here, which leads to a more intuitive way of interpreting the results as 

causal (or not).  Later, I’ll come back to the case when iD  can take on more than 2 values.  For 

each individual, there are 2 possibilities.  iY1  is woman  i ’s circumstances (or universe) with 

‘kids’, and iY0  is her circumstances without.  To be concrete, suppose this outcome variable Y  

is weeks worked in the year i  is age 40.  So we are looking at the effect of children on 

women’s labor supply. 

 

ii eY += 00 β  

iii eY ++= 101 ββ  

 

It would be nice to know the causal effect of ‘having kids’ for each woman: iii YY 101 β=− .  This 

difference tells us how much more would i  work if a she has kids.  Having kids, here, is 

independent of any other circumstance.  Think of it like a stork randomly dropping off kids off at 

different households: the woman has no choice in this allocation for the purpose of considering 

the independent effect).  We don’t want to mistake the analysis with reverse causality: a 

change in circumstances leads also to a change in the decision to have kids.  

 

The causal effect is individual specific.  There is no reason for the effect to be the same for 

everyone and, indeed, it likely is not.  Our static model from last lecture suggests different 

preferences, opportunity costs, and reservation wages will lead to different changes in 

behaviour.  
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The fundamental problem of causal inference is that we can never observe the 

counterfactuals: if i  has kids, for example, we never observe what her circumstances would 

have been if she didn’t have them.1  We only observe iiiii DYDYY 10 )1( +−=  (one equation, two 

unknowns). 

 

The most common identification strategy for predicting values of iY0  and iY1  uses ordinary least 

squares (OLS) A single variable OLS regression model in this context is 

 

(2) iii eDY ++= 10 ββ , 

 

where ie  is a statistical error term.  Choosing values for 0β  and 1β  to minimizing the sum of 

squared errors in the case where iD  is binary is done by choosing 1β  as the difference in 

means between those in the sample with kids and those without: 
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 1̂β  provides an estimate for the average causal effect from having kids only if 

0]0|()1|([ 00 ==−= iiii DYEDYE .  In words, only if mean hours worked for women with no kids is 

equal to the mean hours worked for women with kids had instead they not had any.  Women 

who don’t have kids may have better job opportunities or prefer working over women who do, 

and would work more anyway, even a stork made a visit to the house.  In this example, 

                                                 
1 Bill Murray in the movie ‘Groundhog Day’ could observe counterfactuals because he kept waking up on 
the same day.  He used this ability for testing out different pick up lines to attract women. 
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]0|()1|([ 00 =−= iiii DYEDYE  would be negative.  A nonzero amount for this expression is called 

‘omitted variables bias’.  Other variables that affect both iY  and iD  will bias our estimate of the 

causal effect. 

 

More generally, we can express omitted variables bias (OVB) using the OLS formula for 

estimating 1β , even when iD  is continuous (e.g. number of kids) 
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The omitted variables bias is 
)var(
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i

ii

D
De : the estimate for the causal effect of having kids is 

biases upwards (downwards) if factors that positively relate to iY  ( ie ) also positive (negatively) 

relate to having more children. 

 

Note that random assignment of iD  ensures that 
)var(

),cov(

i

ii

D
De  is zero.  That’s why experiments 

with random assignment generate the most convincing analyses for estimating causal effects.  

Of course, most people choose not to participate in an experiment involving random 

assignment of kids. 

 

If this term is not zero, our estimate of 1β  has no causal interpretation. 

 

Drawing causal inferences from data is the central focus in applied labor economics: so 

central, that most labor economists that make causal conclusions from a set of results use 

more than half the paper or presentation trying to convince us that the research design is 

credible and in fact the omitted variables bias is negligible.  Most papers are scrutinized on the 

basis of whether or not this argument seems correct.  Failing to account for omitted variables 

bias or not accounting for it well enough comes up time and time again, almost everywhere 

drawing causal conclusions.  It’s good to be sceptical, because it’s so difficult to generate 
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conditions in social sciences when we can draw causal conclusions.  Freeman’s shoe leather 

paper provides an excellent critique of this and you are encouraged to read it. 

 

One of the most common approaches to dealing with the omitted variables bias is to add more 

control variables to the regression.  Without loss of generality, consider one additional control. 

Suppose we had a measure of woman i ’s years of schooling iS .  Let’s again suppose, for 

now, that schooling is a binary variable for the purposes of simplifying what is being estimated 

and for causal interpretation.  Schooling is likely related to the possible wage a woman could 

earn if she did work, and so may affect iY  positively and iD  negatively.  The omitted variable 

bias from leaving iS  out of the regression is negative.  The multivariate regression equation is: 

 

 iiii eSDY +++= 110 βββ  

 

With both binary variables, 1̂β  is: 
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where 0Si
f =  is the fraction in the sample with schooling equal to zero.  If there is no omitted 

variables bias, 1̂β  can be interpreted as the average causal effect of having kids.2 

 

                                                 
2 This causal effect will be weighted by the distribution of S if the conditional expectations function is not 
actually linear (see Angrist and Kruger, 1999). 
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The now weighted omitted variable bias is conditional on the additional control variable.  A bias 

remains in estimating the (weighted) average causal effect from kids if any additional factors 

are related to having kids and hours worked, among women with the same level of education. 

 

A key question in any regression study is whether selection on observables is enough to make 

the remaining OVB zero.  The approach would clearly be acceptable if iD  is randomly 

assigned conditional on iS .  Whether you win the Green Card lottery, for example depends on 

your nationality, since some nationalities are not eligible.  But conditional on nationality, 

winning the Green Card is supposed to be random.  Even without random assignment, a 

multivariate regression approach might be plausible if we know a lot about the process 

generating the regressor of interest, and we have accurately measured variables that capture 

factors behind this process.  Often, however, it is not realistic to believe we understand human 

behaviour enough to map out an accurate functional form for iD .  In this case, without actually 

having detailed knowledge of the process that determines whether a woman has kids, we can 

never be sure we’ve controlled for other factors by adding more covariates.3   

 

The analysis for the continuous variable case is analogous.  From our original regression 

equation iiii eSDY +++= 110 βββ , let iû  be the estimated residual after regression iD  on iS .  iû  

is, by construction, the residual portion of iD  that is uncorrelated with iS  after fitting a linear 

relationship.  Now we have: 
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3 Showing that the estimate of 1β  does not change substantially after adding another control variable is 
sometimes used as evidence that the OVB is negligible because umobserved factors correlated with this 
additional variable will be partially accounted for (if the correlation was 1, the left out variable would be 
fully accounted for).  If unobserved variables correlated with the control contributed to a significant 

omitted variables bias, we might expect the estimate of 1β  to change after adding the observed control.  
Not seeing this is reassuring, but there could still be other factors not correlated with the added control or 
only weakly correlated that lead to OVB.  For more on this, see Altonjii, Elder, and Taber: “Selection on 
observed and unobserved variables” (unpublished).   
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The omitted variables bias is now independent of the linear relationship between  iD  and iS .  

Any other factors that affect iY  and iD  will lead to a biased causal interpretation, as discussed 

in the discrete case above.  If the relationship in nonlinear, the estimate may still be biased 

from iS , with the direction of bias dependent on how iû  over predicts iD  and under predicts, 

(draw figure) 

 

Causal Interpretation when regressor is not binary 
 

When there is no omitted variables bias, we saw above the OLS estimate for iD  can be 

interpreted as the estimate for the average effect of switching from 0=iD  to 0=iD .  The 

interpretation differs a little when there are more than two possible cases of interest.  Let D  be 

the total number of children woman  i  could have, and iDY ,  be woman i ’s circumstances (or 

the state of i ’s universe) with D  children.  We are interested in knowing the underlying 

functional relationship that describes how an individual’s weeks worked would differ if she had 

a different number of children.  This relationship is person specific, so we write: 

  

(1) )(, DfY iiD = . 

 

iDY ,  describes the potential (or latent) weeks that person i would work after having D children.  

The function )(Dfi  tells us what i  would earn for any value of D.  The most common 

identification strategy for predicting values of iDY ,  uses ordinary least squares (OLS) A single 

variable OLS regression model in this context is 

 

(2) iii eDY ++= 10 ββ , 

 

where iY  and iD  are actual weeks worked and children observed for individual i  respectively.   
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If the OLS assumption that 0),( =ii eDCov  is satisfied, the estimate of 1β  from this OLS 

regression has the interpretation as the ‘average derivative’ of the causal relationship: 

[ ])(' DfE i . 

 

Proof: 

 

The OLS coefficients minimize: [ ]210 )ˆˆ( ii DYE ββ +−  

 

This is the same as minimizing: ( ) ( )[ ]210 )|()ˆˆ()|( iiiiii DYEYDDYEE −++− ββ  
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Instrumental Variables 
 

Let’s return to the single variable regression model of interest: 

 

iii eDY ++= 10 ββ  

 

And let me define iD  here as the total number of children woman i  has.  Angrist and Evans 

(1998 AER) adopt an instrumental variables approach to estimating the causal impact of 

having kids on women’s labor supply.  An ‘instrument’ is a variable that affects the independent 

variable of interest (in this case, iD ), but that variable is unrelated to any unobserved factor 

that we are worried about which could affect iY .  Angrist and Evans note that when parents 

often desire to raise boys and girls.  Parents with two sons or two daughters are more likely to 

have a third child (with the hope that the third one will be of the opposite sex).  This can easily 

be verified and is done in their Table 3. 

 

Suppose we can write this relationship down as: 

 

iii vZD ++= 10 δδ , 

 

where iZ  is equal to 1 if the mother has two boys or two girls,  

 

For an instrument to be valid, the following must be true: 

 

0),cov( ≠ii ZD , and 0),cov( =ii eZ  

 

In practice, we also would like a strong correlation between iD and iZ .  If, for example fewer 

than 1% of the women in our sample had an additional child because their first two were both 

girls, it could be very hard to detect the effect from the additional child off of such a small 

sample.  The estimated effect will tend to be imprecisely measured.  Weak correlations lead to 

measurement error problems (see below). 
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Suppose we estimate: 

 

ii ZD 10
ˆˆˆ δδ +=  

 

This step is called the First Stage.  For example, if the portion of mothers with their first 2 

children of the same sex that have more than 2 children is 10 percentage points higher than 

mothers with their first 2 children a boy and a girl, then 1.1̂ =δ .  We thus attribute the average 

difference to having initial same sex children.   

 

Let’s substitute the predicted number of children for each individual, based only on whether the 

individual had initial same sex children, into the main equation: 

 

iii eDY ++= ˆ
10 ββ  

 

Note that iii vDD ˆˆ += : We use only the variation from initial same sex composition to estimate 

the effect children have on labor supplied. 

 

Note that if initial same sex composition perfectly predicted number of children, then ii DD ˆ= .  

We could just use the original equation if this was the case, since child bearing is only 

determined by initial same sex composition.  On the other hand, if the instrument did not 

predict child bearing at all, 1̂δ  would be zero, and so we would have no variation to work with. 

 

Regressing iY  on iD̂  we have: 
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This estimate is called the Second Stage.  From the omitted variable bias formula, our estimate 

of B1 is unbiased if 0),ˆcov( =ii eD , and by assumption it is.   

 

The ‘reduced form’ is the regression equation between the outcome variable and the 

instrument: 

 

iii ZY ελλ ++= 10  

 

Compare this regression equation of iY  on iD̂ : 
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The OLS estimates are the same: 111
ˆˆˆ δβλ = .   
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When iZ  is a binary variable, as it is here, we can rewrite this expression as: 
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This is called the Wald estimator, which provides a very intuitive way of thinking about the 

instrumental variables approach.  It says the IV estimate for the 1β  is simply the difference in 

mean hours worked between women with their first 2 children of the same sex and those 

without, divided by the difference in the total number of children between women with their first 
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2 children of the same sex and those without.  If having two same sex siblings is associated 

with a change in labor supply, and having same sex children only leads to an increase in the 

likelihood of having another child, then dividing this change in labor supply by the average 

increase in children associated with having initially same sex children will give us an estimate 

of the increase in labor supply from having one additional child. 

 

Causal interpretation of IV 
 

The IV estimate has an important causal interpretation. if we allow for one more additional 

assumption.  The monotonicity assumption says the instrument works only in one direction.  

While an instrument may have no effect on some individuals, for those that do react, either the 

variable being instrumented becomes always larger, or always smaller.  In our example, the 

monotonicity assumption clearly holds, because it’s not possible to have fewer children as a 

response to having the first 2 children the same sex. 

 

If a valid instrument and the monotonicity assumption, IV estimates capture the average effect 

of treatment on those who change state in response to a change in the instrument.  In this 

example, the IV approach estimates the average effect of having an additional child for those 

women who respond to having an additional child because their first 2 children were of the 

same sex.  Imbens and Angrist (JASA 94) call this the Local Average Treatment Effect (LATE). 

 

Note that the LATE may be very different from the average treatment effect (ATE) for the 

whole population.  While we may be interested in the labor supply effects from children from a 

more general population, IV allows for causal estimates among a very particular subset of the 

population: those affected by the instrument.  It is not correct to extrapolate that this average 

effect is also the same for other women in the whole population. 

 

Often, however, the individuals we wish to know the treatment effect for are those affected by 

the instrument. 
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This might not be the case here.  What group of women are we estimating the LATE for here?  

These are women who want both sex children and are willing enough to have an additional 

child solely for this reason.  Angrist and Evans estimate that, at most,  7% of American women 

had an additional child as a result of sex preferences (table 3).  We are not able to estimate the 

effect of children on labor supply, for other 93%.  For example, the results will not identify the 

effect from ‘accidental’ additional children.  And the results do not identify the effect from not 

having any children versus one child (this is obvious in this example, because Angrist and 

Evan’s sample only looks at families with at least 2 children).  

 

Proof of LATE 
 

We only observe whether an individual has kids or not, and whether the binary instrument is 

zero or not.  For example, for a woman with a third child and the first two children of the same 

sex, we don’t know whether she would have had that third child if the first two children were of 

opposite sex.  Let iD1  and iD0  denote potential outcomes for iD  depending on whether the instrument 

is assigned or not.  We can express the observed outcomes as: 

 

iiiii DZDZD 01 )1( −+=  

 

4 possibilities for each individual: 

1,0
0,1
1,1
0,0

10

10

10

10

==
==
==
==

ii

ii

ii

ii

DD
DD
DD
DD

 

 

 

Assume independence: differences in Z are not correlated with differences in iD1 , iD0 , iY1 , and iY0  

Assume first stage: D and Z are correlated 

Assume monotonicity: either iDD ii ∀≥ 01  or vice versa. 

Monotonicity narrows the set of possible outcomes for iD  from 4 to 3. 
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if ii DD 01 ≥ , since this implies ii DD 01 −  is either 0 or 1. 

 

 

 

 

Standard error with IV 
 

Note, that in calculating how precisely B1 is estimated, we have to adjust the variance 

estimate.  It turns out the asymptotic variance of 1̂β  is: 
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where 2σ  is the population variance of v, 2
Kidsσ  is the population variance of Kids, N is the 

sample size, and 2
,samesexKidsρ  is the square of the population correlation between Kids and 

Samesex.  As with the OLS estimator, the variance decreases to zero as the sample size gets 

larger and larger.  All values here can be estimated consistently.  For completeness, the 

estimate of the variance is: 
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where ∑−
= 22 ˆ

2
1ˆ iv

N
σ , 2

,samesexKidsR  is the R-squared obtained after running the regression of 

Kids on samesex, and SST is the total sum of squares of the Kids variable. 

 

Pitfalls with Instrumental Variables 
 

1) Is the instrument valid? 

 

The assumption that 0),cov( =ii eZ  is just an assumption .  Often in when using this approach, 

the credibility of the results will rest on this.  Angrist and Evans show that same sex 

composition is uncorrelated with many observable background characteristics (Table 4).  This 

doesn’t show conclusively that other unobserved variables are uncorrelated with this 

instrument, but it helps. 

 

2) a ‘weak’ instrument 

 

An instrumental variable is said to be ‘weak’, if ),( ii ZDcorr is small.  We can rewrite the 

asymptotic estimate of B1 as: 
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Compare this last term to the OLS estimate of B1: 
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If there is ANY remaining correlation between the instrumental variable and unobserved factors 

affecting the outcome, then this omitted variables bias will be exacerbated by a weak 

instrument.  That is, a weak correlation between the instrument and the independent variable 

will make the omitted variables bias (if it exists) larger.  Compared to the OLS estimate, if there 

instrument is not completely valid, it is not clear whether the OLS estimate or the IV estimate 

will be less biased.  In fact, OLS will give less biased results if: 
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Thus, when using instrumental variables, it is always important to justify your instrument 

(convince us that it is uncorrelated with possible omitted variables) and show that the 

relationship between the instrument and the independent variable of interest is significant.   

 

A quick note about using IV with multiple regression. 

 

The IV estimator for the simple regression model is easily extended to the multiple regression 

case.  One key thing to remember is that all of the independent variables (except the one you 

are instrumenting) must be used in the First Stage.  For example, if the equation being 

estimated was:  

 

 iiii vZKidsH +++= 210 βββ  

 

where Z was some control variable, the First Stage would be: 

 

iiii eZsamesexKids +++= 210 δδδ  

 

We must include these controls when estimating the effect the instrument has on influencing 

the independent variable of interest. 

 

What do Angrist and Evans find? 
 

Table 5 shows results with no additional controls. 

 

Table 7 shows results with controls, and compares OLS results with IV results. 

 

Note, they also use having twins after the first child as an instrument for having 3 kids instead 

of 2, but I will not talk much about this. Feel free to read more about it in the paper. 

 

 

 




